L(s) = 1 | − 2.54·2-s − 3.34i·3-s + 4.49·4-s + 8.53i·6-s − 6.36·8-s − 8.20·9-s − 15.0i·12-s − 6.77i·13-s + 7.23·16-s + 20.9·18-s + 4.79·23-s + 21.3i·24-s − 5·25-s + 17.2i·26-s + 17.4i·27-s + ⋯ |
L(s) = 1 | − 1.80·2-s − 1.93i·3-s + 2.24·4-s + 3.48i·6-s − 2.25·8-s − 2.73·9-s − 4.34i·12-s − 1.87i·13-s + 1.80·16-s + 4.92·18-s + 1.00·23-s + 4.35i·24-s − 25-s + 3.38i·26-s + 3.34i·27-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.156−0.987i)Λ(2−s)
Λ(s)=(=(1127s/2ΓC(s+1/2)L(s)(−0.156−0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
−0.156−0.987i
|
Analytic conductor: |
8.99914 |
Root analytic conductor: |
2.99985 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(1126,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :1/2), −0.156−0.987i)
|
Particular Values
L(1) |
≈ |
0.2510334883 |
L(21) |
≈ |
0.2510334883 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1−4.79T |
good | 2 | 1+2.54T+2T2 |
| 3 | 1+3.34iT−3T2 |
| 5 | 1+5T2 |
| 11 | 1−11T2 |
| 13 | 1+6.77iT−13T2 |
| 17 | 1+17T2 |
| 19 | 1+19T2 |
| 29 | 1+6.70T+29T2 |
| 31 | 1+10.1iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1−0.987iT−41T2 |
| 43 | 1−43T2 |
| 47 | 1−8.61iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1−4.26iT−59T2 |
| 61 | 1+61T2 |
| 67 | 1−67T2 |
| 71 | 1+14.0T+71T2 |
| 73 | 1−1.17iT−73T2 |
| 79 | 1−79T2 |
| 83 | 1+83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.990749632574807053057190339079, −8.191206582225484632439265772284, −7.62537264241238050497832295304, −7.30230901421023206290924431347, −6.15470831196934065236023506876, −5.66957570581116654291420145557, −3.06906820930652488472601553333, −2.23488961508807332227161259283, −1.15468526990917564733860842361, −0.21556333019660758790878453055,
1.91991739721287333490679969570, 3.22294624526648296090049032042, 4.24759569664494539459509241107, 5.31377875159097420134897193662, 6.43849482232625393709164669968, 7.34015648628121494422311406722, 8.575275729840034868361088559003, 8.956888360528917366720892846612, 9.536248482732909854396453187064, 10.14195159101239665595191089962