L(s) = 1 | + (−1.78 + 0.713i)2-s + (1.94 − 1.85i)4-s + (−1.34 + 2.93i)8-s + (0.981 + 0.189i)9-s + (0.771 + 0.308i)11-s + (0.167 − 3.50i)16-s + (−1.88 + 0.363i)18-s − 1.59·22-s + (−0.327 + 0.945i)23-s + (−0.786 − 0.618i)25-s + (0.273 − 0.0801i)29-s + (1.14 + 3.32i)32-s + (2.25 − 1.45i)36-s + (1.65 + 0.318i)37-s + (−0.544 − 1.19i)43-s + (2.06 − 0.828i)44-s + ⋯ |
L(s) = 1 | + (−1.78 + 0.713i)2-s + (1.94 − 1.85i)4-s + (−1.34 + 2.93i)8-s + (0.981 + 0.189i)9-s + (0.771 + 0.308i)11-s + (0.167 − 3.50i)16-s + (−1.88 + 0.363i)18-s − 1.59·22-s + (−0.327 + 0.945i)23-s + (−0.786 − 0.618i)25-s + (0.273 − 0.0801i)29-s + (1.14 + 3.32i)32-s + (2.25 − 1.45i)36-s + (1.65 + 0.318i)37-s + (−0.544 − 1.19i)43-s + (2.06 − 0.828i)44-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(0.638−0.769i)Λ(1−s)
Λ(s)=(=(1127s/2ΓC(s)L(s)(0.638−0.769i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
0.638−0.769i
|
Analytic conductor: |
0.562446 |
Root analytic conductor: |
0.749964 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :0), 0.638−0.769i)
|
Particular Values
L(21) |
≈ |
0.5240252371 |
L(21) |
≈ |
0.5240252371 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+(0.327−0.945i)T |
good | 2 | 1+(1.78−0.713i)T+(0.723−0.690i)T2 |
| 3 | 1+(−0.981−0.189i)T2 |
| 5 | 1+(0.786+0.618i)T2 |
| 11 | 1+(−0.771−0.308i)T+(0.723+0.690i)T2 |
| 13 | 1+(−0.415+0.909i)T2 |
| 17 | 1+(0.888+0.458i)T2 |
| 19 | 1+(0.888−0.458i)T2 |
| 29 | 1+(−0.273+0.0801i)T+(0.841−0.540i)T2 |
| 31 | 1+(0.327−0.945i)T2 |
| 37 | 1+(−1.65−0.318i)T+(0.928+0.371i)T2 |
| 41 | 1+(0.142−0.989i)T2 |
| 43 | 1+(0.544+1.19i)T+(−0.654+0.755i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(−0.252+0.130i)T+(0.580−0.814i)T2 |
| 59 | 1+(0.995−0.0950i)T2 |
| 61 | 1+(−0.981+0.189i)T2 |
| 67 | 1+(−1.50−1.18i)T+(0.235+0.971i)T2 |
| 71 | 1+(0.118−0.822i)T+(−0.959−0.281i)T2 |
| 73 | 1+(−0.0475+0.998i)T2 |
| 79 | 1+(−0.252−0.130i)T+(0.580+0.814i)T2 |
| 83 | 1+(0.142+0.989i)T2 |
| 89 | 1+(0.327+0.945i)T2 |
| 97 | 1+(0.142−0.989i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.804055547268963343124224065990, −9.457089058638790907327794120595, −8.435588739579030824801620468890, −7.76144178148624569814708276042, −7.02347794785143534536035596263, −6.37991516445185632423747939096, −5.41048462070235961124002868466, −4.07060767481808551899350581364, −2.25722802809866430814011184894, −1.23600636111698756311311627262,
1.06338571190988432946504560913, 2.13503069472381162042096921836, 3.36140842843713122473140111641, 4.32406654422176469176113533216, 6.19053536935441266448918712079, 6.87026208858937101552438070450, 7.75285274015612189776583228334, 8.377404708513062911600608201723, 9.432223485688093580567907747646, 9.635422470322342298643234316209