L(s) = 1 | + (0.173 − 0.984i)2-s + (0.517 − 1.65i)3-s + (−0.939 − 0.342i)4-s + (−0.258 − 0.710i)5-s + (−1.53 − 0.797i)6-s + (0.777 + 1.34i)7-s + (−0.5 + 0.866i)8-s + (−2.46 − 1.71i)9-s + (−0.744 + 0.131i)10-s + (0.832 + 0.480i)11-s + (−1.05 + 1.37i)12-s + (0.416 + 0.496i)13-s + (1.46 − 0.532i)14-s + (−1.30 + 0.0594i)15-s + (0.766 + 0.642i)16-s + (6.73 + 1.18i)17-s + ⋯ |
L(s) = 1 | + (0.122 − 0.696i)2-s + (0.298 − 0.954i)3-s + (−0.469 − 0.171i)4-s + (−0.115 − 0.317i)5-s + (−0.627 − 0.325i)6-s + (0.294 + 0.509i)7-s + (−0.176 + 0.306i)8-s + (−0.821 − 0.570i)9-s + (−0.235 + 0.0415i)10-s + (0.250 + 0.144i)11-s + (−0.303 + 0.397i)12-s + (0.115 + 0.137i)13-s + (0.390 − 0.142i)14-s + (−0.337 + 0.0153i)15-s + (0.191 + 0.160i)16-s + (1.63 + 0.287i)17-s + ⋯ |
Λ(s)=(=(114s/2ΓC(s)L(s)(−0.184+0.982i)Λ(2−s)
Λ(s)=(=(114s/2ΓC(s+1/2)L(s)(−0.184+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
114
= 2⋅3⋅19
|
Sign: |
−0.184+0.982i
|
Analytic conductor: |
0.910294 |
Root analytic conductor: |
0.954093 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ114(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 114, ( :1/2), −0.184+0.982i)
|
Particular Values
L(1) |
≈ |
0.729462−0.879312i |
L(21) |
≈ |
0.729462−0.879312i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173+0.984i)T |
| 3 | 1+(−0.517+1.65i)T |
| 19 | 1+(4.14−1.35i)T |
good | 5 | 1+(0.258+0.710i)T+(−3.83+3.21i)T2 |
| 7 | 1+(−0.777−1.34i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−0.832−0.480i)T+(5.5+9.52i)T2 |
| 13 | 1+(−0.416−0.496i)T+(−2.25+12.8i)T2 |
| 17 | 1+(−6.73−1.18i)T+(15.9+5.81i)T2 |
| 23 | 1+(−0.400+1.10i)T+(−17.6−14.7i)T2 |
| 29 | 1+(−1.39−7.92i)T+(−27.2+9.91i)T2 |
| 31 | 1+(2.63−1.52i)T+(15.5−26.8i)T2 |
| 37 | 1−4.12iT−37T2 |
| 41 | 1+(4.09+3.43i)T+(7.11+40.3i)T2 |
| 43 | 1+(7.34−2.67i)T+(32.9−27.6i)T2 |
| 47 | 1+(3.11−0.548i)T+(44.1−16.0i)T2 |
| 53 | 1+(13.6+4.96i)T+(40.6+34.0i)T2 |
| 59 | 1+(−2.02+11.4i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−10.1−3.70i)T+(46.7+39.2i)T2 |
| 67 | 1+(9.19−1.62i)T+(62.9−22.9i)T2 |
| 71 | 1+(−0.0322+0.0117i)T+(54.3−45.6i)T2 |
| 73 | 1+(3.04+2.55i)T+(12.6+71.8i)T2 |
| 79 | 1+(0.893−1.06i)T+(−13.7−77.7i)T2 |
| 83 | 1+(10.4−6.05i)T+(41.5−71.8i)T2 |
| 89 | 1+(−4.68+3.92i)T+(15.4−87.6i)T2 |
| 97 | 1+(−9.54−1.68i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.94017169370280250183319474119, −12.38834027264263289499241841151, −11.56291898639289080631777791898, −10.22804778511427163997357574909, −8.837972739532904457400059254134, −8.120530073209348129558961756331, −6.57767324312862377559979415772, −5.16396058582476973217693566769, −3.31321013956548319010295501370, −1.61950410827600855092488691341,
3.34483724372996788864475836307, 4.58817094953926010843683071487, 5.87594332519679508753761771036, 7.41357765521036412336681041048, 8.416021669883106392291555840484, 9.610172311796264846283338001059, 10.57030123123334137049116453992, 11.67083358712823674657957585571, 13.19809185373099852823073772677, 14.25313797082788886889186664879