Properties

Label 2-115-1.1-c3-0-0
Degree $2$
Conductor $115$
Sign $1$
Analytic cond. $6.78521$
Root an. cond. $2.60484$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.93·2-s − 3.85·3-s + 0.637·4-s − 5·5-s + 11.3·6-s − 23.5·7-s + 21.6·8-s − 12.1·9-s + 14.6·10-s − 58.2·11-s − 2.45·12-s + 68.5·13-s + 69.3·14-s + 19.2·15-s − 68.6·16-s + 101.·17-s + 35.6·18-s − 7.02·19-s − 3.18·20-s + 91.0·21-s + 171.·22-s − 23·23-s − 83.4·24-s + 25·25-s − 201.·26-s + 150.·27-s − 15.0·28-s + ⋯
L(s)  = 1  − 1.03·2-s − 0.742·3-s + 0.0797·4-s − 0.447·5-s + 0.771·6-s − 1.27·7-s + 0.956·8-s − 0.448·9-s + 0.464·10-s − 1.59·11-s − 0.0591·12-s + 1.46·13-s + 1.32·14-s + 0.332·15-s − 1.07·16-s + 1.44·17-s + 0.466·18-s − 0.0848·19-s − 0.0356·20-s + 0.945·21-s + 1.65·22-s − 0.208·23-s − 0.709·24-s + 0.200·25-s − 1.51·26-s + 1.07·27-s − 0.101·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $1$
Analytic conductor: \(6.78521\)
Root analytic conductor: \(2.60484\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3393370062\)
\(L(\frac12)\) \(\approx\) \(0.3393370062\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 5T \)
23 \( 1 + 23T \)
good2 \( 1 + 2.93T + 8T^{2} \)
3 \( 1 + 3.85T + 27T^{2} \)
7 \( 1 + 23.5T + 343T^{2} \)
11 \( 1 + 58.2T + 1.33e3T^{2} \)
13 \( 1 - 68.5T + 2.19e3T^{2} \)
17 \( 1 - 101.T + 4.91e3T^{2} \)
19 \( 1 + 7.02T + 6.85e3T^{2} \)
29 \( 1 - 206.T + 2.43e4T^{2} \)
31 \( 1 - 54.8T + 2.97e4T^{2} \)
37 \( 1 + 241.T + 5.06e4T^{2} \)
41 \( 1 + 122.T + 6.89e4T^{2} \)
43 \( 1 + 320.T + 7.95e4T^{2} \)
47 \( 1 - 107.T + 1.03e5T^{2} \)
53 \( 1 - 127.T + 1.48e5T^{2} \)
59 \( 1 - 693.T + 2.05e5T^{2} \)
61 \( 1 + 899.T + 2.26e5T^{2} \)
67 \( 1 - 110.T + 3.00e5T^{2} \)
71 \( 1 - 225.T + 3.57e5T^{2} \)
73 \( 1 - 746.T + 3.89e5T^{2} \)
79 \( 1 + 1.09e3T + 4.93e5T^{2} \)
83 \( 1 - 1.28e3T + 5.71e5T^{2} \)
89 \( 1 - 1.20e3T + 7.04e5T^{2} \)
97 \( 1 - 903.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99298136631232983892396359156, −11.88669253397764018252067523996, −10.57890989989705518926454502166, −10.16209450217894625077240365764, −8.715476569558740201865894845728, −7.890627998094180743156842988206, −6.45859579729192296268086441367, −5.22482506741171296884994348225, −3.29939336007389935685831012019, −0.59393817036756763483328392026, 0.59393817036756763483328392026, 3.29939336007389935685831012019, 5.22482506741171296884994348225, 6.45859579729192296268086441367, 7.890627998094180743156842988206, 8.715476569558740201865894845728, 10.16209450217894625077240365764, 10.57890989989705518926454502166, 11.88669253397764018252067523996, 12.99298136631232983892396359156

Graph of the $Z$-function along the critical line