L(s) = 1 | − 2.93·2-s − 3.85·3-s + 0.637·4-s − 5·5-s + 11.3·6-s − 23.5·7-s + 21.6·8-s − 12.1·9-s + 14.6·10-s − 58.2·11-s − 2.45·12-s + 68.5·13-s + 69.3·14-s + 19.2·15-s − 68.6·16-s + 101.·17-s + 35.6·18-s − 7.02·19-s − 3.18·20-s + 91.0·21-s + 171.·22-s − 23·23-s − 83.4·24-s + 25·25-s − 201.·26-s + 150.·27-s − 15.0·28-s + ⋯ |
L(s) = 1 | − 1.03·2-s − 0.742·3-s + 0.0797·4-s − 0.447·5-s + 0.771·6-s − 1.27·7-s + 0.956·8-s − 0.448·9-s + 0.464·10-s − 1.59·11-s − 0.0591·12-s + 1.46·13-s + 1.32·14-s + 0.332·15-s − 1.07·16-s + 1.44·17-s + 0.466·18-s − 0.0848·19-s − 0.0356·20-s + 0.945·21-s + 1.65·22-s − 0.208·23-s − 0.709·24-s + 0.200·25-s − 1.51·26-s + 1.07·27-s − 0.101·28-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.3393370062 |
L(21) |
≈ |
0.3393370062 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+5T |
| 23 | 1+23T |
good | 2 | 1+2.93T+8T2 |
| 3 | 1+3.85T+27T2 |
| 7 | 1+23.5T+343T2 |
| 11 | 1+58.2T+1.33e3T2 |
| 13 | 1−68.5T+2.19e3T2 |
| 17 | 1−101.T+4.91e3T2 |
| 19 | 1+7.02T+6.85e3T2 |
| 29 | 1−206.T+2.43e4T2 |
| 31 | 1−54.8T+2.97e4T2 |
| 37 | 1+241.T+5.06e4T2 |
| 41 | 1+122.T+6.89e4T2 |
| 43 | 1+320.T+7.95e4T2 |
| 47 | 1−107.T+1.03e5T2 |
| 53 | 1−127.T+1.48e5T2 |
| 59 | 1−693.T+2.05e5T2 |
| 61 | 1+899.T+2.26e5T2 |
| 67 | 1−110.T+3.00e5T2 |
| 71 | 1−225.T+3.57e5T2 |
| 73 | 1−746.T+3.89e5T2 |
| 79 | 1+1.09e3T+4.93e5T2 |
| 83 | 1−1.28e3T+5.71e5T2 |
| 89 | 1−1.20e3T+7.04e5T2 |
| 97 | 1−903.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.99298136631232983892396359156, −11.88669253397764018252067523996, −10.57890989989705518926454502166, −10.16209450217894625077240365764, −8.715476569558740201865894845728, −7.890627998094180743156842988206, −6.45859579729192296268086441367, −5.22482506741171296884994348225, −3.29939336007389935685831012019, −0.59393817036756763483328392026,
0.59393817036756763483328392026, 3.29939336007389935685831012019, 5.22482506741171296884994348225, 6.45859579729192296268086441367, 7.890627998094180743156842988206, 8.715476569558740201865894845728, 10.16209450217894625077240365764, 10.57890989989705518926454502166, 11.88669253397764018252067523996, 12.99298136631232983892396359156