Properties

Label 2-115-1.1-c3-0-18
Degree $2$
Conductor $115$
Sign $-1$
Analytic cond. $6.78521$
Root an. cond. $2.60484$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s − 4·4-s + 5·5-s − 6·6-s − 2·7-s − 24·8-s − 18·9-s + 10·10-s − 16·11-s + 12·12-s − 47·13-s − 4·14-s − 15·15-s − 16·16-s − 24·17-s − 36·18-s − 56·19-s − 20·20-s + 6·21-s − 32·22-s − 23·23-s + 72·24-s + 25·25-s − 94·26-s + 135·27-s + 8·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.107·7-s − 1.06·8-s − 2/3·9-s + 0.316·10-s − 0.438·11-s + 0.288·12-s − 1.00·13-s − 0.0763·14-s − 0.258·15-s − 1/4·16-s − 0.342·17-s − 0.471·18-s − 0.676·19-s − 0.223·20-s + 0.0623·21-s − 0.310·22-s − 0.208·23-s + 0.612·24-s + 1/5·25-s − 0.709·26-s + 0.962·27-s + 0.0539·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(6.78521\)
Root analytic conductor: \(2.60484\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 115,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - p T \)
23 \( 1 + p T \)
good2 \( 1 - p T + p^{3} T^{2} \)
3 \( 1 + p T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 16 T + p^{3} T^{2} \)
13 \( 1 + 47 T + p^{3} T^{2} \)
17 \( 1 + 24 T + p^{3} T^{2} \)
19 \( 1 + 56 T + p^{3} T^{2} \)
29 \( 1 - 85 T + p^{3} T^{2} \)
31 \( 1 - 67 T + p^{3} T^{2} \)
37 \( 1 - 104 T + p^{3} T^{2} \)
41 \( 1 + 53 T + p^{3} T^{2} \)
43 \( 1 + 234 T + p^{3} T^{2} \)
47 \( 1 - 285 T + p^{3} T^{2} \)
53 \( 1 - 2 T + p^{3} T^{2} \)
59 \( 1 - 80 T + p^{3} T^{2} \)
61 \( 1 + 764 T + p^{3} T^{2} \)
67 \( 1 - 236 T + p^{3} T^{2} \)
71 \( 1 + 289 T + p^{3} T^{2} \)
73 \( 1 + 225 T + p^{3} T^{2} \)
79 \( 1 - 24 T + p^{3} T^{2} \)
83 \( 1 - 684 T + p^{3} T^{2} \)
89 \( 1 + 1370 T + p^{3} T^{2} \)
97 \( 1 + 110 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62473830138726021822781319226, −11.81738890813518215519086870923, −10.54115165425474789150963672913, −9.438991490602391872746786499377, −8.278925163476720277372220008673, −6.52676103716535718236934152456, −5.50555403756233399211378041138, −4.56036285838337283133747946354, −2.77522407183088203267266037926, 0, 2.77522407183088203267266037926, 4.56036285838337283133747946354, 5.50555403756233399211378041138, 6.52676103716535718236934152456, 8.278925163476720277372220008673, 9.438991490602391872746786499377, 10.54115165425474789150963672913, 11.81738890813518215519086870923, 12.62473830138726021822781319226

Graph of the $Z$-function along the critical line