Properties

Label 2-115-1.1-c5-0-12
Degree $2$
Conductor $115$
Sign $1$
Analytic cond. $18.4441$
Root an. cond. $4.29466$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.79·2-s + 20.6·3-s + 63.9·4-s − 25·5-s − 202.·6-s + 61.8·7-s − 313.·8-s + 185.·9-s + 244.·10-s + 636.·11-s + 1.32e3·12-s − 14.1·13-s − 605.·14-s − 517.·15-s + 1.01e3·16-s + 1.05e3·17-s − 1.81e3·18-s − 2.38e3·19-s − 1.59e3·20-s + 1.27e3·21-s − 6.23e3·22-s + 529·23-s − 6.47e3·24-s + 625·25-s + 138.·26-s − 1.19e3·27-s + 3.95e3·28-s + ⋯
L(s)  = 1  − 1.73·2-s + 1.32·3-s + 1.99·4-s − 0.447·5-s − 2.29·6-s + 0.477·7-s − 1.72·8-s + 0.761·9-s + 0.774·10-s + 1.58·11-s + 2.65·12-s − 0.0231·13-s − 0.826·14-s − 0.593·15-s + 0.995·16-s + 0.886·17-s − 1.31·18-s − 1.51·19-s − 0.893·20-s + 0.633·21-s − 2.74·22-s + 0.208·23-s − 2.29·24-s + 0.200·25-s + 0.0401·26-s − 0.316·27-s + 0.953·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $1$
Analytic conductor: \(18.4441\)
Root analytic conductor: \(4.29466\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.380390539\)
\(L(\frac12)\) \(\approx\) \(1.380390539\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
23 \( 1 - 529T \)
good2 \( 1 + 9.79T + 32T^{2} \)
3 \( 1 - 20.6T + 243T^{2} \)
7 \( 1 - 61.8T + 1.68e4T^{2} \)
11 \( 1 - 636.T + 1.61e5T^{2} \)
13 \( 1 + 14.1T + 3.71e5T^{2} \)
17 \( 1 - 1.05e3T + 1.41e6T^{2} \)
19 \( 1 + 2.38e3T + 2.47e6T^{2} \)
29 \( 1 - 2.73e3T + 2.05e7T^{2} \)
31 \( 1 - 5.12e3T + 2.86e7T^{2} \)
37 \( 1 + 5.15e3T + 6.93e7T^{2} \)
41 \( 1 - 6.75e3T + 1.15e8T^{2} \)
43 \( 1 - 9.32e3T + 1.47e8T^{2} \)
47 \( 1 - 2.29e4T + 2.29e8T^{2} \)
53 \( 1 - 2.65e4T + 4.18e8T^{2} \)
59 \( 1 - 7.93e3T + 7.14e8T^{2} \)
61 \( 1 - 377.T + 8.44e8T^{2} \)
67 \( 1 - 5.94e4T + 1.35e9T^{2} \)
71 \( 1 + 1.21e4T + 1.80e9T^{2} \)
73 \( 1 - 6.06e4T + 2.07e9T^{2} \)
79 \( 1 + 1.61e3T + 3.07e9T^{2} \)
83 \( 1 - 4.40e4T + 3.93e9T^{2} \)
89 \( 1 + 1.23e5T + 5.58e9T^{2} \)
97 \( 1 - 1.18e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.29907580421913329475273077869, −11.28137240074761892540608186842, −10.13540195812454718363126645294, −9.068133589759071087496195401863, −8.525155456727522574676969073463, −7.69388971620210917828158724287, −6.58067595971239528257181366930, −3.94969256054595103028631608388, −2.36840226193348725904225118056, −1.06270293561828920338506828092, 1.06270293561828920338506828092, 2.36840226193348725904225118056, 3.94969256054595103028631608388, 6.58067595971239528257181366930, 7.69388971620210917828158724287, 8.525155456727522574676969073463, 9.068133589759071087496195401863, 10.13540195812454718363126645294, 11.28137240074761892540608186842, 12.29907580421913329475273077869

Graph of the $Z$-function along the critical line