L(s) = 1 | + (0.174 − 2.43i)2-s + (−0.591 + 0.128i)3-s + (−3.92 − 0.564i)4-s + (0.343 − 2.20i)5-s + (0.210 + 1.46i)6-s + (0.0839 − 0.0458i)7-s + (−1.02 + 4.69i)8-s + (−2.39 + 1.09i)9-s + (−5.32 − 1.22i)10-s + (2.37 + 2.06i)11-s + (2.39 − 0.171i)12-s + (3.02 − 5.54i)13-s + (−0.0970 − 0.212i)14-s + (0.0810 + 1.35i)15-s + (3.64 + 1.07i)16-s + (3.26 + 2.44i)17-s + ⋯ |
L(s) = 1 | + (0.123 − 1.72i)2-s + (−0.341 + 0.0742i)3-s + (−1.96 − 0.282i)4-s + (0.153 − 0.988i)5-s + (0.0858 + 0.597i)6-s + (0.0317 − 0.0173i)7-s + (−0.361 + 1.65i)8-s + (−0.798 + 0.364i)9-s + (−1.68 − 0.386i)10-s + (0.716 + 0.621i)11-s + (0.691 − 0.0494i)12-s + (0.839 − 1.53i)13-s + (−0.0259 − 0.0567i)14-s + (0.0209 + 0.348i)15-s + (0.912 + 0.267i)16-s + (0.791 + 0.592i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.951+0.307i)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)(−0.951+0.307i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.951+0.307i
|
Analytic conductor: |
0.918279 |
Root analytic conductor: |
0.958269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1/2), −0.951+0.307i)
|
Particular Values
L(1) |
≈ |
0.143611−0.910034i |
L(21) |
≈ |
0.143611−0.910034i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.343+2.20i)T |
| 23 | 1+(−4.64−1.20i)T |
good | 2 | 1+(−0.174+2.43i)T+(−1.97−0.284i)T2 |
| 3 | 1+(0.591−0.128i)T+(2.72−1.24i)T2 |
| 7 | 1+(−0.0839+0.0458i)T+(3.78−5.88i)T2 |
| 11 | 1+(−2.37−2.06i)T+(1.56+10.8i)T2 |
| 13 | 1+(−3.02+5.54i)T+(−7.02−10.9i)T2 |
| 17 | 1+(−3.26−2.44i)T+(4.78+16.3i)T2 |
| 19 | 1+(−0.180+1.25i)T+(−18.2−5.35i)T2 |
| 29 | 1+(−2.05+0.295i)T+(27.8−8.17i)T2 |
| 31 | 1+(0.614−0.395i)T+(12.8−28.1i)T2 |
| 37 | 1+(3.96+1.47i)T+(27.9+24.2i)T2 |
| 41 | 1+(2.69−5.90i)T+(−26.8−30.9i)T2 |
| 43 | 1+(−1.53−7.06i)T+(−39.1+17.8i)T2 |
| 47 | 1+(−3.91−3.91i)T+47iT2 |
| 53 | 1+(5.23+9.58i)T+(−28.6+44.5i)T2 |
| 59 | 1+(−4.23−14.4i)T+(−49.6+31.8i)T2 |
| 61 | 1+(−1.76−2.74i)T+(−25.3+55.4i)T2 |
| 67 | 1+(5.91+0.422i)T+(66.3+9.53i)T2 |
| 71 | 1+(4.76+5.49i)T+(−10.1+70.2i)T2 |
| 73 | 1+(1.29+1.73i)T+(−20.5+70.0i)T2 |
| 79 | 1+(−10.8+3.18i)T+(66.4−42.7i)T2 |
| 83 | 1+(−1.69+4.53i)T+(−62.7−54.3i)T2 |
| 89 | 1+(6.50+4.17i)T+(36.9+80.9i)T2 |
| 97 | 1+(2.58+6.94i)T+(−73.3+63.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.81821711956324289123769983407, −12.06384727294051108982712656338, −11.11066878464696587108576820759, −10.23134329691274936027008263453, −9.154691722635157369786352027335, −8.176822300205084186690970891764, −5.73867004085767892960783955568, −4.65492235634227742872557087347, −3.17105848088928327037185957415, −1.21904949803798579639881796378,
3.66693221048591655252416168619, 5.43630510890021560520115243476, 6.44215598729489501532022461946, 6.99207114366562511596914615846, 8.492050539517107373499475997102, 9.328241871343850709396531538443, 11.01349227118960675134098693831, 11.95382992010966191460249040251, 13.83628017356076374416703392280, 14.08263413973384348312851398498