L(s) = 1 | + (−0.579 + 2.66i)2-s + (−2.04 + 1.52i)3-s + (−4.93 − 2.25i)4-s + (2.12 + 0.709i)5-s + (−2.89 − 6.32i)6-s + (−0.134 + 1.87i)7-s + (5.60 − 7.48i)8-s + (0.990 − 3.37i)9-s + (−3.11 + 5.23i)10-s + (−0.338 + 0.526i)11-s + (13.5 − 2.94i)12-s + (−2.62 + 0.187i)13-s + (−4.92 − 1.44i)14-s + (−5.41 + 1.79i)15-s + (9.57 + 11.0i)16-s + (0.245 − 0.657i)17-s + ⋯ |
L(s) = 1 | + (−0.409 + 1.88i)2-s + (−1.17 + 0.883i)3-s + (−2.46 − 1.12i)4-s + (0.948 + 0.317i)5-s + (−1.17 − 2.58i)6-s + (−0.0507 + 0.709i)7-s + (1.98 − 2.64i)8-s + (0.330 − 1.12i)9-s + (−0.985 + 1.65i)10-s + (−0.102 + 0.158i)11-s + (3.90 − 0.850i)12-s + (−0.727 + 0.0520i)13-s + (−1.31 − 0.386i)14-s + (−1.39 + 0.463i)15-s + (2.39 + 2.76i)16-s + (0.0595 − 0.159i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.549+0.835i)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)(−0.549+0.835i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.549+0.835i
|
Analytic conductor: |
0.918279 |
Root analytic conductor: |
0.958269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1/2), −0.549+0.835i)
|
Particular Values
L(1) |
≈ |
0.238440−0.441954i |
L(21) |
≈ |
0.238440−0.441954i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.12−0.709i)T |
| 23 | 1+(3.33−3.44i)T |
good | 2 | 1+(0.579−2.66i)T+(−1.81−0.830i)T2 |
| 3 | 1+(2.04−1.52i)T+(0.845−2.87i)T2 |
| 7 | 1+(0.134−1.87i)T+(−6.92−0.996i)T2 |
| 11 | 1+(0.338−0.526i)T+(−4.56−10.0i)T2 |
| 13 | 1+(2.62−0.187i)T+(12.8−1.85i)T2 |
| 17 | 1+(−0.245+0.657i)T+(−12.8−11.1i)T2 |
| 19 | 1+(0.374−0.819i)T+(−12.4−14.3i)T2 |
| 29 | 1+(0.285−0.130i)T+(18.9−21.9i)T2 |
| 31 | 1+(−0.816−5.68i)T+(−29.7+8.73i)T2 |
| 37 | 1+(−0.127−0.233i)T+(−20.0+31.1i)T2 |
| 41 | 1+(−6.57+1.92i)T+(34.4−22.1i)T2 |
| 43 | 1+(−6.98−9.32i)T+(−12.1+41.2i)T2 |
| 47 | 1+(−3.96+3.96i)T−47iT2 |
| 53 | 1+(−6.60−0.472i)T+(52.4+7.54i)T2 |
| 59 | 1+(2.23+1.93i)T+(8.39+58.3i)T2 |
| 61 | 1+(9.02−1.29i)T+(58.5−17.1i)T2 |
| 67 | 1+(13.7+2.99i)T+(60.9+27.8i)T2 |
| 71 | 1+(−5.95+3.82i)T+(29.4−64.5i)T2 |
| 73 | 1+(6.69−2.49i)T+(55.1−47.8i)T2 |
| 79 | 1+(−6.21+7.16i)T+(−11.2−78.1i)T2 |
| 83 | 1+(0.0389−0.0212i)T+(44.8−69.8i)T2 |
| 89 | 1+(0.678−4.72i)T+(−85.3−25.0i)T2 |
| 97 | 1+(−9.14−4.99i)T+(52.4+81.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.65745264394187198687032646583, −13.70154623428484176025425458207, −12.30244978617833379347798410960, −10.61010733143732331733347908285, −9.770442921644334363667495895585, −9.044652026886008630603296683745, −7.43449902408080320240271637166, −6.15373520705704231085976440578, −5.60118328484108183443265467650, −4.64052954795198168329691996913,
0.75913600923154005491167631284, 2.26968813677609194912601584614, 4.43377062670301981073560843590, 5.81082135733700591368015361680, 7.53622107096943701102983558551, 9.051574769954332686871080584979, 10.19235413413752190475205913328, 10.80167234644681439949626079854, 11.91374420698017730388777543247, 12.59200559494016912784518518104