L(s) = 1 | + (−1.23 + 0.927i)2-s + (−1.46 − 0.547i)3-s + (0.110 − 0.377i)4-s + (1.69 + 1.46i)5-s + (2.32 − 0.683i)6-s + (−4.02 + 0.876i)7-s + (−0.868 − 2.32i)8-s + (−0.409 − 0.354i)9-s + (−3.45 − 0.238i)10-s + (−4.51 + 0.649i)11-s + (−0.369 + 0.493i)12-s + (−0.844 + 3.88i)13-s + (4.17 − 4.82i)14-s + (−1.68 − 3.07i)15-s + (3.89 + 2.50i)16-s + (0.141 − 0.258i)17-s + ⋯ |
L(s) = 1 | + (−0.875 + 0.655i)2-s + (−0.848 − 0.316i)3-s + (0.0553 − 0.188i)4-s + (0.757 + 0.653i)5-s + (0.950 − 0.278i)6-s + (−1.52 + 0.331i)7-s + (−0.307 − 0.823i)8-s + (−0.136 − 0.118i)9-s + (−1.09 − 0.0754i)10-s + (−1.36 + 0.195i)11-s + (−0.106 + 0.142i)12-s + (−0.234 + 1.07i)13-s + (1.11 − 1.28i)14-s + (−0.435 − 0.793i)15-s + (0.974 + 0.626i)16-s + (0.0342 − 0.0627i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.999+0.0320i)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)(−0.999+0.0320i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.999+0.0320i
|
Analytic conductor: |
0.918279 |
Root analytic conductor: |
0.958269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1/2), −0.999+0.0320i)
|
Particular Values
L(1) |
≈ |
0.00352219−0.219418i |
L(21) |
≈ |
0.00352219−0.219418i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.69−1.46i)T |
| 23 | 1+(0.292+4.78i)T |
good | 2 | 1+(1.23−0.927i)T+(0.563−1.91i)T2 |
| 3 | 1+(1.46+0.547i)T+(2.26+1.96i)T2 |
| 7 | 1+(4.02−0.876i)T+(6.36−2.90i)T2 |
| 11 | 1+(4.51−0.649i)T+(10.5−3.09i)T2 |
| 13 | 1+(0.844−3.88i)T+(−11.8−5.40i)T2 |
| 17 | 1+(−0.141+0.258i)T+(−9.19−14.3i)T2 |
| 19 | 1+(−3.49−1.02i)T+(15.9+10.2i)T2 |
| 29 | 1+(−0.403−1.37i)T+(−24.3+15.6i)T2 |
| 31 | 1+(2.77−6.08i)T+(−20.3−23.4i)T2 |
| 37 | 1+(−0.220−3.08i)T+(−36.6+5.26i)T2 |
| 41 | 1+(6.08+7.02i)T+(−5.83+40.5i)T2 |
| 43 | 1+(−0.482+1.29i)T+(−32.4−28.1i)T2 |
| 47 | 1+(−9.04−9.04i)T+47iT2 |
| 53 | 1+(0.184+0.847i)T+(−48.2+22.0i)T2 |
| 59 | 1+(2.33+3.63i)T+(−24.5+53.6i)T2 |
| 61 | 1+(3.31+1.51i)T+(39.9+46.1i)T2 |
| 67 | 1+(−0.270−0.361i)T+(−18.8+64.2i)T2 |
| 71 | 1+(0.537−3.73i)T+(−68.1−20.0i)T2 |
| 73 | 1+(3.83−2.09i)T+(39.4−61.4i)T2 |
| 79 | 1+(8.40−5.39i)T+(32.8−71.8i)T2 |
| 83 | 1+(−0.939+0.0672i)T+(82.1−11.8i)T2 |
| 89 | 1+(−1.99−4.35i)T+(−58.2+67.2i)T2 |
| 97 | 1+(7.77+0.556i)T+(96.0+13.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.07739990784167071247466837154, −12.86326168598345903728913510960, −12.20560057379735038487167603726, −10.62466343367965654938539891039, −9.776512555257760426313406916505, −8.888166347715044326940320093396, −7.17812479139612480088898793836, −6.56974626535451590138818664523, −5.60240408996451414205564154346, −3.01932520409192900068422646256,
0.32863689174953200078330714399, 2.80574410052741156463498113576, 5.30010180892064442940163565049, 5.86612921384523157521295244970, 7.83390659027218753300128879357, 9.235081685196203040822623058868, 10.10859938293795059572800894404, 10.50384148311578455168583570828, 11.78526021828480528767783606242, 12.98739022728605615932502664518