L(s) = 1 | + (1.35 − 1.01i)2-s + (−1.01 − 0.377i)3-s + (0.237 − 0.810i)4-s + (0.440 − 2.19i)5-s + (−1.74 + 0.513i)6-s + (2.09 − 0.456i)7-s + (0.680 + 1.82i)8-s + (−1.38 − 1.20i)9-s + (−1.62 − 3.40i)10-s + (−0.856 + 0.123i)11-s + (−0.546 + 0.730i)12-s + (−1.18 + 5.43i)13-s + (2.37 − 2.73i)14-s + (−1.27 + 2.05i)15-s + (4.18 + 2.69i)16-s + (−2.77 + 5.08i)17-s + ⋯ |
L(s) = 1 | + (0.954 − 0.714i)2-s + (−0.584 − 0.217i)3-s + (0.118 − 0.405i)4-s + (0.197 − 0.980i)5-s + (−0.713 + 0.209i)6-s + (0.792 − 0.172i)7-s + (0.240 + 0.645i)8-s + (−0.461 − 0.400i)9-s + (−0.512 − 1.07i)10-s + (−0.258 + 0.0371i)11-s + (−0.157 + 0.210i)12-s + (−0.327 + 1.50i)13-s + (0.633 − 0.731i)14-s + (−0.328 + 0.529i)15-s + (1.04 + 0.672i)16-s + (−0.673 + 1.23i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.364+0.931i)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)(0.364+0.931i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.364+0.931i
|
Analytic conductor: |
0.918279 |
Root analytic conductor: |
0.958269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1/2), 0.364+0.931i)
|
Particular Values
L(1) |
≈ |
1.17788−0.803548i |
L(21) |
≈ |
1.17788−0.803548i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.440+2.19i)T |
| 23 | 1+(−0.530+4.76i)T |
good | 2 | 1+(−1.35+1.01i)T+(0.563−1.91i)T2 |
| 3 | 1+(1.01+0.377i)T+(2.26+1.96i)T2 |
| 7 | 1+(−2.09+0.456i)T+(6.36−2.90i)T2 |
| 11 | 1+(0.856−0.123i)T+(10.5−3.09i)T2 |
| 13 | 1+(1.18−5.43i)T+(−11.8−5.40i)T2 |
| 17 | 1+(2.77−5.08i)T+(−9.19−14.3i)T2 |
| 19 | 1+(−3.32−0.976i)T+(15.9+10.2i)T2 |
| 29 | 1+(2.24+7.65i)T+(−24.3+15.6i)T2 |
| 31 | 1+(−0.110+0.241i)T+(−20.3−23.4i)T2 |
| 37 | 1+(0.0307+0.429i)T+(−36.6+5.26i)T2 |
| 41 | 1+(2.05+2.37i)T+(−5.83+40.5i)T2 |
| 43 | 1+(−0.178+0.479i)T+(−32.4−28.1i)T2 |
| 47 | 1+(4.99+4.99i)T+47iT2 |
| 53 | 1+(−2.17−9.99i)T+(−48.2+22.0i)T2 |
| 59 | 1+(−0.591−0.919i)T+(−24.5+53.6i)T2 |
| 61 | 1+(−0.500−0.228i)T+(39.9+46.1i)T2 |
| 67 | 1+(2.90+3.88i)T+(−18.8+64.2i)T2 |
| 71 | 1+(−2.16+15.0i)T+(−68.1−20.0i)T2 |
| 73 | 1+(2.47−1.34i)T+(39.4−61.4i)T2 |
| 79 | 1+(−5.55+3.56i)T+(32.8−71.8i)T2 |
| 83 | 1+(−17.4+1.24i)T+(82.1−11.8i)T2 |
| 89 | 1+(0.783+1.71i)T+(−58.2+67.2i)T2 |
| 97 | 1+(11.5+0.825i)T+(96.0+13.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.23300023179014943978852708873, −12.16388356501338256927634495078, −11.74062786678250799236576137735, −10.73320648861363331344106477355, −9.106075229499011169917698795235, −8.026582740209522445228759036154, −6.20670748606048602666917689966, −5.00233455899901569216451570717, −4.11348778612108461586032548663, −1.91025942024740598476435500280,
3.07175077250734540240709381559, 5.08118690429876746379530553757, 5.48367582589482470005013048154, 6.90639332131677385093260938550, 7.88469498050752204003249502482, 9.788543081824180716119628963296, 10.85617068285562044663935874850, 11.61575929742592371674328796146, 13.08962436604531071889886258612, 13.95303127272904610769022284651