L(s) = 1 | + (1.63 − 1.22i)2-s + (1.28 + 0.480i)3-s + (0.607 − 2.07i)4-s + (−2.17 + 0.527i)5-s + (2.69 − 0.790i)6-s + (−2.19 + 0.476i)7-s + (−0.112 − 0.301i)8-s + (−0.835 − 0.723i)9-s + (−2.90 + 3.51i)10-s + (0.377 − 0.0542i)11-s + (1.77 − 2.37i)12-s + (0.0183 − 0.0842i)13-s + (−2.99 + 3.45i)14-s + (−3.05 − 0.365i)15-s + (3.07 + 1.97i)16-s + (1.64 − 3.00i)17-s + ⋯ |
L(s) = 1 | + (1.15 − 0.864i)2-s + (0.744 + 0.277i)3-s + (0.303 − 1.03i)4-s + (−0.971 + 0.235i)5-s + (1.09 − 0.322i)6-s + (−0.828 + 0.180i)7-s + (−0.0397 − 0.106i)8-s + (−0.278 − 0.241i)9-s + (−0.918 + 1.11i)10-s + (0.113 − 0.0163i)11-s + (0.513 − 0.686i)12-s + (0.00508 − 0.0233i)13-s + (−0.800 + 0.923i)14-s + (−0.789 − 0.0943i)15-s + (0.769 + 0.494i)16-s + (0.398 − 0.728i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.746+0.665i)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)(0.746+0.665i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.746+0.665i
|
Analytic conductor: |
0.918279 |
Root analytic conductor: |
0.958269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1/2), 0.746+0.665i)
|
Particular Values
L(1) |
≈ |
1.67857−0.639741i |
L(21) |
≈ |
1.67857−0.639741i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.17−0.527i)T |
| 23 | 1+(−4.78−0.374i)T |
good | 2 | 1+(−1.63+1.22i)T+(0.563−1.91i)T2 |
| 3 | 1+(−1.28−0.480i)T+(2.26+1.96i)T2 |
| 7 | 1+(2.19−0.476i)T+(6.36−2.90i)T2 |
| 11 | 1+(−0.377+0.0542i)T+(10.5−3.09i)T2 |
| 13 | 1+(−0.0183+0.0842i)T+(−11.8−5.40i)T2 |
| 17 | 1+(−1.64+3.00i)T+(−9.19−14.3i)T2 |
| 19 | 1+(2.64+0.777i)T+(15.9+10.2i)T2 |
| 29 | 1+(−0.489−1.66i)T+(−24.3+15.6i)T2 |
| 31 | 1+(1.34−2.94i)T+(−20.3−23.4i)T2 |
| 37 | 1+(−0.849−11.8i)T+(−36.6+5.26i)T2 |
| 41 | 1+(5.72+6.61i)T+(−5.83+40.5i)T2 |
| 43 | 1+(0.439−1.17i)T+(−32.4−28.1i)T2 |
| 47 | 1+(−7.76−7.76i)T+47iT2 |
| 53 | 1+(2.77+12.7i)T+(−48.2+22.0i)T2 |
| 59 | 1+(6.76+10.5i)T+(−24.5+53.6i)T2 |
| 61 | 1+(4.28+1.95i)T+(39.9+46.1i)T2 |
| 67 | 1+(−0.294−0.392i)T+(−18.8+64.2i)T2 |
| 71 | 1+(−0.242+1.68i)T+(−68.1−20.0i)T2 |
| 73 | 1+(8.94−4.88i)T+(39.4−61.4i)T2 |
| 79 | 1+(−4.54+2.92i)T+(32.8−71.8i)T2 |
| 83 | 1+(−15.3+1.09i)T+(82.1−11.8i)T2 |
| 89 | 1+(−1.74−3.81i)T+(−58.2+67.2i)T2 |
| 97 | 1+(1.07+0.0772i)T+(96.0+13.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.39052058358060883059106338413, −12.40640831231717928952678948584, −11.66488241137958127126092037056, −10.63096725835839958092670850641, −9.305686574891183092914120807652, −8.149456694493357120116280013299, −6.58191869149000479975146025109, −4.88101420264745926110859556909, −3.52777648782859861639968284789, −2.92133048819605786260221828754,
3.21626170052963107240049121473, 4.26218028870937390123560525558, 5.77425415506106517338138041745, 7.05846838529320989226878296400, 7.905802676583933518079823603253, 9.058621318574708772931916829562, 10.70057164660134706409397422993, 12.20161304985985350695706705056, 12.96654405171295354384953708883, 13.71141741762519387255016078970