L(s) = 1 | + (−1.13 − 2.48i)2-s + (−4.84 + 1.42i)3-s + (0.356 − 0.411i)4-s + (4.20 + 2.70i)5-s + (9.02 + 10.4i)6-s + (−3.26 − 22.7i)7-s + (−22.3 − 6.57i)8-s + (−1.29 + 0.830i)9-s + (1.94 − 13.5i)10-s + (−19.7 + 43.1i)11-s + (−1.14 + 2.50i)12-s + (3.63 − 25.3i)13-s + (−52.7 + 33.8i)14-s + (−24.2 − 7.10i)15-s + (8.44 + 58.7i)16-s + (56.7 + 65.5i)17-s + ⋯ |
L(s) = 1 | + (−0.401 − 0.878i)2-s + (−0.931 + 0.273i)3-s + (0.0445 − 0.0514i)4-s + (0.376 + 0.241i)5-s + (0.613 + 0.708i)6-s + (−0.176 − 1.22i)7-s + (−0.989 − 0.290i)8-s + (−0.0478 + 0.0307i)9-s + (0.0614 − 0.427i)10-s + (−0.540 + 1.18i)11-s + (−0.0274 + 0.0601i)12-s + (0.0776 − 0.539i)13-s + (−1.00 + 0.647i)14-s + (−0.416 − 0.122i)15-s + (0.131 + 0.917i)16-s + (0.809 + 0.934i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.205−0.978i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(−0.205−0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.205−0.978i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(96,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), −0.205−0.978i)
|
Particular Values
L(2) |
≈ |
0.0612224+0.0753821i |
L(21) |
≈ |
0.0612224+0.0753821i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−4.20−2.70i)T |
| 23 | 1+(87.1−67.6i)T |
good | 2 | 1+(1.13+2.48i)T+(−5.23+6.04i)T2 |
| 3 | 1+(4.84−1.42i)T+(22.7−14.5i)T2 |
| 7 | 1+(3.26+22.7i)T+(−329.+96.6i)T2 |
| 11 | 1+(19.7−43.1i)T+(−871.−1.00e3i)T2 |
| 13 | 1+(−3.63+25.3i)T+(−2.10e3−618.i)T2 |
| 17 | 1+(−56.7−65.5i)T+(−699.+4.86e3i)T2 |
| 19 | 1+(76.3−88.1i)T+(−976.−6.78e3i)T2 |
| 29 | 1+(32.8+37.8i)T+(−3.47e3+2.41e4i)T2 |
| 31 | 1+(149.+43.8i)T+(2.50e4+1.61e4i)T2 |
| 37 | 1+(229.−147.i)T+(2.10e4−4.60e4i)T2 |
| 41 | 1+(−20.7−13.3i)T+(2.86e4+6.26e4i)T2 |
| 43 | 1+(287.−84.3i)T+(6.68e4−4.29e4i)T2 |
| 47 | 1−249.T+1.03e5T2 |
| 53 | 1+(105.+737.i)T+(−1.42e5+4.19e4i)T2 |
| 59 | 1+(−56.0+390.i)T+(−1.97e5−5.78e4i)T2 |
| 61 | 1+(−37.5−11.0i)T+(1.90e5+1.22e5i)T2 |
| 67 | 1+(330.+724.i)T+(−1.96e5+2.27e5i)T2 |
| 71 | 1+(−237.−520.i)T+(−2.34e5+2.70e5i)T2 |
| 73 | 1+(−128.+148.i)T+(−5.53e4−3.85e5i)T2 |
| 79 | 1+(−42.7+297.i)T+(−4.73e5−1.38e5i)T2 |
| 83 | 1+(972.−625.i)T+(2.37e5−5.20e5i)T2 |
| 89 | 1+(−871.+255.i)T+(5.93e5−3.81e5i)T2 |
| 97 | 1+(1.38e3+888.i)T+(3.79e5+8.30e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.98815512590282284759346813859, −12.14338529289985149005935831401, −10.98122573978632192925051475723, −10.19776431928860644644633726514, −10.00984876878327785951734665113, −7.983467510118603291249100209478, −6.53521211749335315041219369711, −5.44507939744148523173026819275, −3.72844039711461989523501347478, −1.77926098007103352911081250686,
0.06224546697333398272858682455, 2.75163514414393636770310066855, 5.42741216162228261164115944942, 5.95627744257267731536096155624, 7.02014625638075030019010475037, 8.557036061629525782373087075878, 9.108782134747149798455222901074, 10.88186382970625015870171293400, 11.88672645362731678727856666429, 12.50508135993430544720288128738