L(s) = 1 | − 7.77i·2-s + 16.5i·3-s − 28.3·4-s + (38.9 + 40.1i)5-s + 128.·6-s − 7.31i·7-s − 28.0i·8-s − 29.6·9-s + (311. − 302. i)10-s − 512.·11-s − 468. i·12-s + 603. i·13-s − 56.8·14-s + (−662. + 642. i)15-s − 1.12e3·16-s + 1.54e3i·17-s + ⋯ |
L(s) = 1 | − 1.37i·2-s + 1.05i·3-s − 0.887·4-s + (0.696 + 0.717i)5-s + 1.45·6-s − 0.0563i·7-s − 0.154i·8-s − 0.121·9-s + (0.986 − 0.956i)10-s − 1.27·11-s − 0.939i·12-s + 0.991i·13-s − 0.0774·14-s + (−0.760 + 0.737i)15-s − 1.10·16-s + 1.29i·17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.717−0.696i)Λ(6−s)
Λ(s)=(=(115s/2ΓC(s+5/2)L(s)(0.717−0.696i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.717−0.696i
|
Analytic conductor: |
18.4441 |
Root analytic conductor: |
4.29466 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(24,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :5/2), 0.717−0.696i)
|
Particular Values
L(3) |
≈ |
1.705741156 |
L(21) |
≈ |
1.705741156 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−38.9−40.1i)T |
| 23 | 1−529iT |
good | 2 | 1+7.77iT−32T2 |
| 3 | 1−16.5iT−243T2 |
| 7 | 1+7.31iT−1.68e4T2 |
| 11 | 1+512.T+1.61e5T2 |
| 13 | 1−603.iT−3.71e5T2 |
| 17 | 1−1.54e3iT−1.41e6T2 |
| 19 | 1−2.17e3T+2.47e6T2 |
| 29 | 1+2.11e3T+2.05e7T2 |
| 31 | 1+6.35e3T+2.86e7T2 |
| 37 | 1+3.40e3iT−6.93e7T2 |
| 41 | 1−8.00e3T+1.15e8T2 |
| 43 | 1−1.46e4iT−1.47e8T2 |
| 47 | 1−2.29e3iT−2.29e8T2 |
| 53 | 1−1.97e4iT−4.18e8T2 |
| 59 | 1−4.84e4T+7.14e8T2 |
| 61 | 1+2.26e3T+8.44e8T2 |
| 67 | 1+4.77e4iT−1.35e9T2 |
| 71 | 1+5.94e4T+1.80e9T2 |
| 73 | 1+1.20e4iT−2.07e9T2 |
| 79 | 1+5.90e4T+3.07e9T2 |
| 83 | 1−8.82e4iT−3.93e9T2 |
| 89 | 1−6.14e4T+5.58e9T2 |
| 97 | 1+5.59e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.67440381456444354851817980420, −11.26104878594114844976988970464, −10.67175325187585483955577495022, −9.906480025673495044340984154370, −9.210602687510484403495837239746, −7.27777959910509069597051553058, −5.59865992238751739569236332933, −4.14693566911099187620510295807, −3.05102650454746914291374371272, −1.74097573759559664947671759342,
0.62126218084556640989897666572, 2.40238050959137791906522817291, 5.16077727678530791163660610043, 5.69561263286208808499789390957, 7.16842135174696814372738731983, 7.71267382719154389276273552270, 8.829000039741333777524552807061, 10.11604233167702972217796810931, 11.78073773620009542231417440208, 13.05099578560108901374199263475