L(s) = 1 | − 2.58·5-s + 33.7·7-s + 33.1·11-s + 4.33·13-s − 11.1·17-s + 121.·19-s − 14.8·23-s − 118.·25-s + 272.·29-s + 165.·31-s − 87.1·35-s + 30.5·37-s − 400.·41-s + 274.·43-s − 487.·47-s + 795.·49-s − 208.·53-s − 85.6·55-s − 369.·59-s − 411.·61-s − 11.1·65-s + 407.·67-s − 262.·71-s + 562.·73-s + 1.11e3·77-s − 955.·79-s − 669.·83-s + ⋯ |
L(s) = 1 | − 0.231·5-s + 1.82·7-s + 0.909·11-s + 0.0924·13-s − 0.159·17-s + 1.47·19-s − 0.134·23-s − 0.946·25-s + 1.74·29-s + 0.956·31-s − 0.421·35-s + 0.135·37-s − 1.52·41-s + 0.974·43-s − 1.51·47-s + 2.32·49-s − 0.540·53-s − 0.210·55-s − 0.816·59-s − 0.864·61-s − 0.0213·65-s + 0.742·67-s − 0.439·71-s + 0.902·73-s + 1.65·77-s − 1.36·79-s − 0.885·83-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.986361217 |
L(21) |
≈ |
2.986361217 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+2.58T+125T2 |
| 7 | 1−33.7T+343T2 |
| 11 | 1−33.1T+1.33e3T2 |
| 13 | 1−4.33T+2.19e3T2 |
| 17 | 1+11.1T+4.91e3T2 |
| 19 | 1−121.T+6.85e3T2 |
| 23 | 1+14.8T+1.21e4T2 |
| 29 | 1−272.T+2.43e4T2 |
| 31 | 1−165.T+2.97e4T2 |
| 37 | 1−30.5T+5.06e4T2 |
| 41 | 1+400.T+6.89e4T2 |
| 43 | 1−274.T+7.95e4T2 |
| 47 | 1+487.T+1.03e5T2 |
| 53 | 1+208.T+1.48e5T2 |
| 59 | 1+369.T+2.05e5T2 |
| 61 | 1+411.T+2.26e5T2 |
| 67 | 1−407.T+3.00e5T2 |
| 71 | 1+262.T+3.57e5T2 |
| 73 | 1−562.T+3.89e5T2 |
| 79 | 1+955.T+4.93e5T2 |
| 83 | 1+669.T+5.71e5T2 |
| 89 | 1−1.32e3T+7.04e5T2 |
| 97 | 1−1.10e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.384177408161764268504258348863, −8.385909899373757885425159506058, −7.959739680720633738064353296400, −7.04273856841079049414846522058, −6.02023273732905480751728746594, −4.94415017739941566032992908067, −4.40093238585390962515350028444, −3.20685936785424956192429632618, −1.81141960225062860285732602125, −0.983671779276637201073792316755,
0.983671779276637201073792316755, 1.81141960225062860285732602125, 3.20685936785424956192429632618, 4.40093238585390962515350028444, 4.94415017739941566032992908067, 6.02023273732905480751728746594, 7.04273856841079049414846522058, 7.959739680720633738064353296400, 8.385909899373757885425159506058, 9.384177408161764268504258348863