Properties

Label 2-1152-1.1-c3-0-29
Degree $2$
Conductor $1152$
Sign $1$
Analytic cond. $67.9702$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18.5·5-s + 29.7·7-s + 9.16·11-s − 80.3·13-s + 31.1·17-s + 89.8·19-s + 57.1·23-s + 220.·25-s + 167.·29-s − 270.·31-s + 552.·35-s + 157.·37-s + 404.·41-s − 317.·43-s − 63.1·47-s + 542.·49-s + 616.·53-s + 170.·55-s − 137.·59-s − 200.·61-s − 1.49e3·65-s − 576.·67-s + 305.·71-s − 198.·73-s + 272.·77-s − 335.·79-s − 981.·83-s + ⋯
L(s)  = 1  + 1.66·5-s + 1.60·7-s + 0.251·11-s − 1.71·13-s + 0.444·17-s + 1.08·19-s + 0.518·23-s + 1.76·25-s + 1.06·29-s − 1.56·31-s + 2.66·35-s + 0.699·37-s + 1.53·41-s − 1.12·43-s − 0.196·47-s + 1.58·49-s + 1.59·53-s + 0.417·55-s − 0.304·59-s − 0.420·61-s − 2.84·65-s − 1.05·67-s + 0.510·71-s − 0.319·73-s + 0.403·77-s − 0.477·79-s − 1.29·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(67.9702\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.808740087\)
\(L(\frac12)\) \(\approx\) \(3.808740087\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 18.5T + 125T^{2} \)
7 \( 1 - 29.7T + 343T^{2} \)
11 \( 1 - 9.16T + 1.33e3T^{2} \)
13 \( 1 + 80.3T + 2.19e3T^{2} \)
17 \( 1 - 31.1T + 4.91e3T^{2} \)
19 \( 1 - 89.8T + 6.85e3T^{2} \)
23 \( 1 - 57.1T + 1.21e4T^{2} \)
29 \( 1 - 167.T + 2.43e4T^{2} \)
31 \( 1 + 270.T + 2.97e4T^{2} \)
37 \( 1 - 157.T + 5.06e4T^{2} \)
41 \( 1 - 404.T + 6.89e4T^{2} \)
43 \( 1 + 317.T + 7.95e4T^{2} \)
47 \( 1 + 63.1T + 1.03e5T^{2} \)
53 \( 1 - 616.T + 1.48e5T^{2} \)
59 \( 1 + 137.T + 2.05e5T^{2} \)
61 \( 1 + 200.T + 2.26e5T^{2} \)
67 \( 1 + 576.T + 3.00e5T^{2} \)
71 \( 1 - 305.T + 3.57e5T^{2} \)
73 \( 1 + 198.T + 3.89e5T^{2} \)
79 \( 1 + 335.T + 4.93e5T^{2} \)
83 \( 1 + 981.T + 5.71e5T^{2} \)
89 \( 1 - 51.0T + 7.04e5T^{2} \)
97 \( 1 - 678.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.522589093918709511695526984132, −8.751891261850584396591259450639, −7.66222641281372018514788489199, −7.05901354685304830183698552476, −5.77827563243256894063278446158, −5.22233497141732088674305687847, −4.54927819706969169864341959802, −2.82284261248844728557922375721, −1.96832593831325954416778781969, −1.10912183581758619118846140617, 1.10912183581758619118846140617, 1.96832593831325954416778781969, 2.82284261248844728557922375721, 4.54927819706969169864341959802, 5.22233497141732088674305687847, 5.77827563243256894063278446158, 7.05901354685304830183698552476, 7.66222641281372018514788489199, 8.751891261850584396591259450639, 9.522589093918709511695526984132

Graph of the $Z$-function along the critical line