L(s) = 1 | − 18.7·5-s + 19.7·7-s − 5.84·11-s − 33.7·13-s − 33.2·17-s + 102.·19-s + 130.·23-s + 228.·25-s − 111.·29-s + 257.·31-s − 370.·35-s − 424.·37-s + 10.9·41-s + 324.·43-s − 599.·47-s + 45.7·49-s − 106.·53-s + 109.·55-s + 617.·59-s + 325.·61-s + 634.·65-s − 240.·67-s + 123.·71-s − 46.7·73-s − 115.·77-s − 547.·79-s − 1.21e3·83-s + ⋯ |
L(s) = 1 | − 1.68·5-s + 1.06·7-s − 0.160·11-s − 0.719·13-s − 0.474·17-s + 1.24·19-s + 1.17·23-s + 1.82·25-s − 0.715·29-s + 1.49·31-s − 1.78·35-s − 1.88·37-s + 0.0416·41-s + 1.15·43-s − 1.86·47-s + 0.133·49-s − 0.276·53-s + 0.269·55-s + 1.36·59-s + 0.682·61-s + 1.21·65-s − 0.437·67-s + 0.207·71-s − 0.0749·73-s − 0.170·77-s − 0.779·79-s − 1.60·83-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+18.7T+125T2 |
| 7 | 1−19.7T+343T2 |
| 11 | 1+5.84T+1.33e3T2 |
| 13 | 1+33.7T+2.19e3T2 |
| 17 | 1+33.2T+4.91e3T2 |
| 19 | 1−102.T+6.85e3T2 |
| 23 | 1−130.T+1.21e4T2 |
| 29 | 1+111.T+2.43e4T2 |
| 31 | 1−257.T+2.97e4T2 |
| 37 | 1+424.T+5.06e4T2 |
| 41 | 1−10.9T+6.89e4T2 |
| 43 | 1−324.T+7.95e4T2 |
| 47 | 1+599.T+1.03e5T2 |
| 53 | 1+106.T+1.48e5T2 |
| 59 | 1−617.T+2.05e5T2 |
| 61 | 1−325.T+2.26e5T2 |
| 67 | 1+240.T+3.00e5T2 |
| 71 | 1−123.T+3.57e5T2 |
| 73 | 1+46.7T+3.89e5T2 |
| 79 | 1+547.T+4.93e5T2 |
| 83 | 1+1.21e3T+5.71e5T2 |
| 89 | 1−1.62e3T+7.04e5T2 |
| 97 | 1+1.27e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.752893435434179807092589020598, −8.128492161959012685480570956475, −7.44063718675487939688833999677, −6.86185151681756448688125697595, −5.22649852598562012707837008044, −4.73261829764607522386804704492, −3.75565105801924994135118994312, −2.76578288630528469667021432288, −1.23412946772039298846437281409, 0,
1.23412946772039298846437281409, 2.76578288630528469667021432288, 3.75565105801924994135118994312, 4.73261829764607522386804704492, 5.22649852598562012707837008044, 6.86185151681756448688125697595, 7.44063718675487939688833999677, 8.128492161959012685480570956475, 8.752893435434179807092589020598