L(s) = 1 | − 8.64·5-s − 4.98·7-s − 31.2·11-s + 46.5·13-s + 29.2·17-s + 87.1·19-s − 38.6·23-s − 50.2·25-s + 131.·29-s + 137.·31-s + 43.0·35-s + 51.9·37-s − 226.·41-s − 16.7·43-s + 110.·47-s − 318.·49-s + 142.·53-s + 270.·55-s − 547.·59-s + 9.17·61-s − 402.·65-s − 22.1·67-s − 1.16e3·71-s + 317.·73-s + 155.·77-s − 958.·79-s − 207.·83-s + ⋯ |
L(s) = 1 | − 0.773·5-s − 0.269·7-s − 0.856·11-s + 0.993·13-s + 0.416·17-s + 1.05·19-s − 0.350·23-s − 0.401·25-s + 0.839·29-s + 0.795·31-s + 0.208·35-s + 0.230·37-s − 0.862·41-s − 0.0593·43-s + 0.341·47-s − 0.927·49-s + 0.368·53-s + 0.662·55-s − 1.20·59-s + 0.0192·61-s − 0.768·65-s − 0.0403·67-s − 1.94·71-s + 0.508·73-s + 0.230·77-s − 1.36·79-s − 0.273·83-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+8.64T+125T2 |
| 7 | 1+4.98T+343T2 |
| 11 | 1+31.2T+1.33e3T2 |
| 13 | 1−46.5T+2.19e3T2 |
| 17 | 1−29.2T+4.91e3T2 |
| 19 | 1−87.1T+6.85e3T2 |
| 23 | 1+38.6T+1.21e4T2 |
| 29 | 1−131.T+2.43e4T2 |
| 31 | 1−137.T+2.97e4T2 |
| 37 | 1−51.9T+5.06e4T2 |
| 41 | 1+226.T+6.89e4T2 |
| 43 | 1+16.7T+7.95e4T2 |
| 47 | 1−110.T+1.03e5T2 |
| 53 | 1−142.T+1.48e5T2 |
| 59 | 1+547.T+2.05e5T2 |
| 61 | 1−9.17T+2.26e5T2 |
| 67 | 1+22.1T+3.00e5T2 |
| 71 | 1+1.16e3T+3.57e5T2 |
| 73 | 1−317.T+3.89e5T2 |
| 79 | 1+958.T+4.93e5T2 |
| 83 | 1+207.T+5.71e5T2 |
| 89 | 1+97.3T+7.04e5T2 |
| 97 | 1−1.21e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.908947255209451755568901722367, −8.066330387742725544778552939993, −7.56649638373872485199248230935, −6.48589540956258302582289408187, −5.62407828629723395306772611233, −4.62660159865972696539602193531, −3.61007776157383569494315271122, −2.82696078355623616342496341354, −1.26366655880377889535661353911, 0,
1.26366655880377889535661353911, 2.82696078355623616342496341354, 3.61007776157383569494315271122, 4.62660159865972696539602193531, 5.62407828629723395306772611233, 6.48589540956258302582289408187, 7.56649638373872485199248230935, 8.066330387742725544778552939993, 8.908947255209451755568901722367