L(s) = 1 | + (0.866 + 0.5i)3-s + (0.499 + 0.866i)9-s + (0.866 − 1.5i)11-s + 17-s − 1.73·19-s + (−0.5 + 0.866i)25-s + 0.999i·27-s + (1.5 − 0.866i)33-s + (0.5 + 0.866i)41-s + (−0.866 + 1.5i)43-s + (−0.5 − 0.866i)49-s + (0.866 + 0.5i)51-s + (−1.49 − 0.866i)57-s + (−0.866 − 1.5i)59-s + (−0.866 − 1.5i)67-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.499 + 0.866i)9-s + (0.866 − 1.5i)11-s + 17-s − 1.73·19-s + (−0.5 + 0.866i)25-s + 0.999i·27-s + (1.5 − 0.866i)33-s + (0.5 + 0.866i)41-s + (−0.866 + 1.5i)43-s + (−0.5 − 0.866i)49-s + (0.866 + 0.5i)51-s + (−1.49 − 0.866i)57-s + (−0.866 − 1.5i)59-s + (−0.866 − 1.5i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.430227966\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.430227966\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + 2T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.838245322069321270051222710495, −9.245013408945647743742190859818, −8.351882239083700585824330099047, −7.959878493191411813236460292709, −6.66913407687611776171316649505, −5.86529393079910395565725270640, −4.71411806411841636565813913717, −3.71335588738781758439519472150, −3.06883693146696507906034106071, −1.63722745860050185923826561579,
1.60322794885275983020278715933, 2.49402314046716422586945968291, 3.84748085446877552486036163676, 4.47335688787094529705439088121, 5.94533847087419271686435575298, 6.82358281772922801825386637426, 7.44391732128144544139111138945, 8.354296547069605555751777138357, 9.050355540359003873534696919260, 9.878668284682313242443972409158