L(s) = 1 | + (0.866 + 0.5i)3-s + (0.499 + 0.866i)9-s + (0.866 − 1.5i)11-s + 17-s − 1.73·19-s + (−0.5 + 0.866i)25-s + 0.999i·27-s + (1.5 − 0.866i)33-s + (0.5 + 0.866i)41-s + (−0.866 + 1.5i)43-s + (−0.5 − 0.866i)49-s + (0.866 + 0.5i)51-s + (−1.49 − 0.866i)57-s + (−0.866 − 1.5i)59-s + (−0.866 − 1.5i)67-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.499 + 0.866i)9-s + (0.866 − 1.5i)11-s + 17-s − 1.73·19-s + (−0.5 + 0.866i)25-s + 0.999i·27-s + (1.5 − 0.866i)33-s + (0.5 + 0.866i)41-s + (−0.866 + 1.5i)43-s + (−0.5 − 0.866i)49-s + (0.866 + 0.5i)51-s + (−1.49 − 0.866i)57-s + (−0.866 − 1.5i)59-s + (−0.866 − 1.5i)67-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.939−0.342i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(1087,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :0), 0.939−0.342i)
|
Particular Values
L(21) |
≈ |
1.430227966 |
L(21) |
≈ |
1.430227966 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.866−0.5i)T |
good | 5 | 1+(0.5−0.866i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1−T+T2 |
| 19 | 1+1.73T+T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T+T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(−0.5−0.866i)T2 |
| 89 | 1+2T+T2 |
| 97 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.838245322069321270051222710495, −9.245013408945647743742190859818, −8.351882239083700585824330099047, −7.959878493191411813236460292709, −6.66913407687611776171316649505, −5.86529393079910395565725270640, −4.71411806411841636565813913717, −3.71335588738781758439519472150, −3.06883693146696507906034106071, −1.63722745860050185923826561579,
1.60322794885275983020278715933, 2.49402314046716422586945968291, 3.84748085446877552486036163676, 4.47335688787094529705439088121, 5.94533847087419271686435575298, 6.82358281772922801825386637426, 7.44391732128144544139111138945, 8.354296547069605555751777138357, 9.050355540359003873534696919260, 9.878668284682313242443972409158