L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.499 − 0.866i)9-s + (−0.866 − 1.5i)11-s + 17-s + 1.73·19-s + (−0.5 − 0.866i)25-s + 0.999i·27-s + (1.5 + 0.866i)33-s + (0.5 − 0.866i)41-s + (0.866 + 1.5i)43-s + (−0.5 + 0.866i)49-s + (−0.866 + 0.5i)51-s + (−1.49 + 0.866i)57-s + (0.866 − 1.5i)59-s + (0.866 − 1.5i)67-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.499 − 0.866i)9-s + (−0.866 − 1.5i)11-s + 17-s + 1.73·19-s + (−0.5 − 0.866i)25-s + 0.999i·27-s + (1.5 + 0.866i)33-s + (0.5 − 0.866i)41-s + (0.866 + 1.5i)43-s + (−0.5 + 0.866i)49-s + (−0.866 + 0.5i)51-s + (−1.49 + 0.866i)57-s + (0.866 − 1.5i)59-s + (0.866 − 1.5i)67-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.939+0.342i)Λ(1−s)
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.939+0.342i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(319,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :0), 0.939+0.342i)
|
Particular Values
L(21) |
≈ |
0.7778984029 |
L(21) |
≈ |
0.7778984029 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.866−0.5i)T |
good | 5 | 1+(0.5+0.866i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1−T+T2 |
| 19 | 1−1.73T+T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T+T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(−0.5+0.866i)T2 |
| 89 | 1+2T+T2 |
| 97 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.934693507884777883111692533549, −9.419622459537768662779858074983, −8.217630033926271213768049277123, −7.56441645998732547790818114098, −6.34009142564284027374456469336, −5.63194683064345890290452089239, −5.05263250295119888734388951383, −3.77225455404695305355969498953, −2.93578396386770892692027149065, −0.906721785050873677663317096060,
1.36436868098597528508970491646, 2.61970212251826839234668221787, 4.06298705114712841407454826840, 5.32646169398997055802109854777, 5.47712973199914126508290944881, 6.94447880615143813301849895722, 7.40545179070304723265444748795, 8.085807409644379365933909592063, 9.576779490568139547323868761367, 9.982934999379420077206598223379