L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.499 − 0.866i)9-s + (−0.866 − 1.5i)11-s + 17-s + 1.73·19-s + (−0.5 − 0.866i)25-s + 0.999i·27-s + (1.5 + 0.866i)33-s + (0.5 − 0.866i)41-s + (0.866 + 1.5i)43-s + (−0.5 + 0.866i)49-s + (−0.866 + 0.5i)51-s + (−1.49 + 0.866i)57-s + (0.866 − 1.5i)59-s + (0.866 − 1.5i)67-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.499 − 0.866i)9-s + (−0.866 − 1.5i)11-s + 17-s + 1.73·19-s + (−0.5 − 0.866i)25-s + 0.999i·27-s + (1.5 + 0.866i)33-s + (0.5 − 0.866i)41-s + (0.866 + 1.5i)43-s + (−0.5 + 0.866i)49-s + (−0.866 + 0.5i)51-s + (−1.49 + 0.866i)57-s + (0.866 − 1.5i)59-s + (0.866 − 1.5i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7778984029\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7778984029\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - 1.73T + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + 2T + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.934693507884777883111692533549, −9.419622459537768662779858074983, −8.217630033926271213768049277123, −7.56441645998732547790818114098, −6.34009142564284027374456469336, −5.63194683064345890290452089239, −5.05263250295119888734388951383, −3.77225455404695305355969498953, −2.93578396386770892692027149065, −0.906721785050873677663317096060,
1.36436868098597528508970491646, 2.61970212251826839234668221787, 4.06298705114712841407454826840, 5.32646169398997055802109854777, 5.47712973199914126508290944881, 6.94447880615143813301849895722, 7.40545179070304723265444748795, 8.085807409644379365933909592063, 9.576779490568139547323868761367, 9.982934999379420077206598223379