Properties

Label 2-1152-8.5-c1-0-10
Degree $2$
Conductor $1152$
Sign $0.707 + 0.707i$
Analytic cond. $9.19876$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4i·11-s − 4i·13-s + 2·17-s − 4i·19-s + 8·23-s + 5·25-s − 8i·29-s + 4·31-s − 4i·37-s + 6·41-s − 4i·43-s − 8·47-s + 9·49-s + 8i·53-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.20i·11-s − 1.10i·13-s + 0.485·17-s − 0.917i·19-s + 1.66·23-s + 25-s − 1.48i·29-s + 0.718·31-s − 0.657i·37-s + 0.937·41-s − 0.609i·43-s − 1.16·47-s + 1.28·49-s + 1.09i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $0.707 + 0.707i$
Analytic conductor: \(9.19876\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1/2),\ 0.707 + 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.260261735\)
\(L(\frac12)\) \(\approx\) \(1.260261735\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 5T^{2} \)
7 \( 1 + 4T + 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 - 8T + 23T^{2} \)
29 \( 1 + 8iT - 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 4iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 8iT - 53T^{2} \)
59 \( 1 + 12iT - 59T^{2} \)
61 \( 1 + 12iT - 61T^{2} \)
67 \( 1 - 12iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.663811347489229773588930741192, −9.132048518469446966080876486697, −7.973267919742689425604578360882, −7.08041437063497275499251406500, −6.50225767569213131207571378596, −5.44173536080275077641181238376, −4.52072352696192125743727723929, −3.27450664674083679853318110082, −2.57591982122599698652948702223, −0.66174165291503170838723340308, 1.12088616122945313007546739541, 2.96515159549670579511462281210, 3.43490745113121803273750169249, 4.73336276285199691977408898635, 5.85632511485663524756946117181, 6.55201621195319094357741740463, 7.21260709704559913010211181603, 8.502765385037461502213041733583, 9.062541882330379183500954998836, 9.836215025557699865033652175394

Graph of the $Z$-function along the critical line