L(s) = 1 | − 4·7-s + 4i·11-s − 4i·13-s + 2·17-s − 4i·19-s + 8·23-s + 5·25-s − 8i·29-s + 4·31-s − 4i·37-s + 6·41-s − 4i·43-s − 8·47-s + 9·49-s + 8i·53-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 1.20i·11-s − 1.10i·13-s + 0.485·17-s − 0.917i·19-s + 1.66·23-s + 25-s − 1.48i·29-s + 0.718·31-s − 0.657i·37-s + 0.937·41-s − 0.609i·43-s − 1.16·47-s + 1.28·49-s + 1.09i·53-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(1152s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
9.19876 |
Root analytic conductor: |
3.03294 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
1.260261735 |
L(21) |
≈ |
1.260261735 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−5T2 |
| 7 | 1+4T+7T2 |
| 11 | 1−4iT−11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1−8T+23T2 |
| 29 | 1+8iT−29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+4iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1−8iT−53T2 |
| 59 | 1+12iT−59T2 |
| 61 | 1+12iT−61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.663811347489229773588930741192, −9.132048518469446966080876486697, −7.973267919742689425604578360882, −7.08041437063497275499251406500, −6.50225767569213131207571378596, −5.44173536080275077641181238376, −4.52072352696192125743727723929, −3.27450664674083679853318110082, −2.57591982122599698652948702223, −0.66174165291503170838723340308,
1.12088616122945313007546739541, 2.96515159549670579511462281210, 3.43490745113121803273750169249, 4.73336276285199691977408898635, 5.85632511485663524756946117181, 6.55201621195319094357741740463, 7.21260709704559913010211181603, 8.502765385037461502213041733583, 9.062541882330379183500954998836, 9.836215025557699865033652175394