L(s) = 1 | − 4·7-s + 4i·11-s − 4i·13-s + 2·17-s − 4i·19-s + 8·23-s + 5·25-s − 8i·29-s + 4·31-s − 4i·37-s + 6·41-s − 4i·43-s − 8·47-s + 9·49-s + 8i·53-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 1.20i·11-s − 1.10i·13-s + 0.485·17-s − 0.917i·19-s + 1.66·23-s + 25-s − 1.48i·29-s + 0.718·31-s − 0.657i·37-s + 0.937·41-s − 0.609i·43-s − 1.16·47-s + 1.28·49-s + 1.09i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.260261735\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.260261735\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + 4T + 7T^{2} \) |
| 11 | \( 1 - 4iT - 11T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 + 8iT - 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + 4iT - 37T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 - 8iT - 53T^{2} \) |
| 59 | \( 1 + 12iT - 59T^{2} \) |
| 61 | \( 1 + 12iT - 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 4iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.663811347489229773588930741192, −9.132048518469446966080876486697, −7.973267919742689425604578360882, −7.08041437063497275499251406500, −6.50225767569213131207571378596, −5.44173536080275077641181238376, −4.52072352696192125743727723929, −3.27450664674083679853318110082, −2.57591982122599698652948702223, −0.66174165291503170838723340308,
1.12088616122945313007546739541, 2.96515159549670579511462281210, 3.43490745113121803273750169249, 4.73336276285199691977408898635, 5.85632511485663524756946117181, 6.55201621195319094357741740463, 7.21260709704559913010211181603, 8.502765385037461502213041733583, 9.062541882330379183500954998836, 9.836215025557699865033652175394