L(s) = 1 | + (1.03 + 0.961i)2-s + (0.381 + 0.606i)3-s + (0.151 + 1.99i)4-s + (−0.388 − 0.309i)5-s + (−0.187 + 0.996i)6-s + (−1.45 − 0.331i)7-s + (−1.76 + 2.21i)8-s + (1.07 − 2.24i)9-s + (−0.105 − 0.694i)10-s + (1.07 − 3.08i)11-s + (−1.15 + 0.852i)12-s + (0.610 + 1.26i)13-s + (−1.18 − 1.73i)14-s + (0.0398 − 0.353i)15-s + (−3.95 + 0.604i)16-s + (2.80 + 2.80i)17-s + ⋯ |
L(s) = 1 | + (0.733 + 0.679i)2-s + (0.220 + 0.350i)3-s + (0.0757 + 0.997i)4-s + (−0.173 − 0.138i)5-s + (−0.0767 + 0.406i)6-s + (−0.548 − 0.125i)7-s + (−0.622 + 0.782i)8-s + (0.359 − 0.746i)9-s + (−0.0332 − 0.219i)10-s + (0.325 − 0.929i)11-s + (−0.332 + 0.246i)12-s + (0.169 + 0.351i)13-s + (−0.316 − 0.464i)14-s + (0.0102 − 0.0913i)15-s + (−0.988 + 0.151i)16-s + (0.679 + 0.679i)17-s + ⋯ |
Λ(s)=(=(116s/2ΓC(s)L(s)(0.372−0.928i)Λ(2−s)
Λ(s)=(=(116s/2ΓC(s+1/2)L(s)(0.372−0.928i)Λ(1−s)
Degree: |
2 |
Conductor: |
116
= 22⋅29
|
Sign: |
0.372−0.928i
|
Analytic conductor: |
0.926264 |
Root analytic conductor: |
0.962426 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ116(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 116, ( :1/2), 0.372−0.928i)
|
Particular Values
L(1) |
≈ |
1.22670+0.829745i |
L(21) |
≈ |
1.22670+0.829745i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.03−0.961i)T |
| 29 | 1+(3.77−3.84i)T |
good | 3 | 1+(−0.381−0.606i)T+(−1.30+2.70i)T2 |
| 5 | 1+(0.388+0.309i)T+(1.11+4.87i)T2 |
| 7 | 1+(1.45+0.331i)T+(6.30+3.03i)T2 |
| 11 | 1+(−1.07+3.08i)T+(−8.60−6.85i)T2 |
| 13 | 1+(−0.610−1.26i)T+(−8.10+10.1i)T2 |
| 17 | 1+(−2.80−2.80i)T+17iT2 |
| 19 | 1+(4.35+2.73i)T+(8.24+17.1i)T2 |
| 23 | 1+(−0.0143+0.0114i)T+(5.11−22.4i)T2 |
| 31 | 1+(−0.262−2.32i)T+(−30.2+6.89i)T2 |
| 37 | 1+(1.69−0.592i)T+(28.9−23.0i)T2 |
| 41 | 1+(0.378−0.378i)T−41iT2 |
| 43 | 1+(3.80+0.429i)T+(41.9+9.56i)T2 |
| 47 | 1+(−8.34−2.92i)T+(36.7+29.3i)T2 |
| 53 | 1+(6.44−8.07i)T+(−11.7−51.6i)T2 |
| 59 | 1−14.5iT−59T2 |
| 61 | 1+(−0.184+0.116i)T+(26.4−54.9i)T2 |
| 67 | 1+(−1.44−0.695i)T+(41.7+52.3i)T2 |
| 71 | 1+(−11.0+5.30i)T+(44.2−55.5i)T2 |
| 73 | 1+(−6.61−0.745i)T+(71.1+16.2i)T2 |
| 79 | 1+(11.7−4.10i)T+(61.7−49.2i)T2 |
| 83 | 1+(−3.90+0.892i)T+(74.7−36.0i)T2 |
| 89 | 1+(−15.4+1.74i)T+(86.7−19.8i)T2 |
| 97 | 1+(−8.35−5.25i)T+(42.0+87.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.88375019344348553471808378560, −12.82227314395935590512529712286, −12.03624946005720292097796107015, −10.70975833602916864609838204317, −9.216402068519151328783976490396, −8.353531996412876243991698128995, −6.86019321501103044179562503685, −5.96914666080147699709668184739, −4.29655131761876825369040810952, −3.31741976212892889508717250223,
2.06558539952046943745299199582, 3.67899850421372048123041399718, 5.11885682947743076363168292005, 6.54428666702854622551873760565, 7.75128860729808631477646609051, 9.458044461733806357590638990615, 10.30771341140933516075238417059, 11.46057070148825730431387996853, 12.56365294768499641476262908003, 13.12694575174062378158415995422