Properties

Label 2-116-116.15-c1-0-5
Degree $2$
Conductor $116$
Sign $0.372 - 0.928i$
Analytic cond. $0.926264$
Root an. cond. $0.962426$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.03 + 0.961i)2-s + (0.381 + 0.606i)3-s + (0.151 + 1.99i)4-s + (−0.388 − 0.309i)5-s + (−0.187 + 0.996i)6-s + (−1.45 − 0.331i)7-s + (−1.76 + 2.21i)8-s + (1.07 − 2.24i)9-s + (−0.105 − 0.694i)10-s + (1.07 − 3.08i)11-s + (−1.15 + 0.852i)12-s + (0.610 + 1.26i)13-s + (−1.18 − 1.73i)14-s + (0.0398 − 0.353i)15-s + (−3.95 + 0.604i)16-s + (2.80 + 2.80i)17-s + ⋯
L(s)  = 1  + (0.733 + 0.679i)2-s + (0.220 + 0.350i)3-s + (0.0757 + 0.997i)4-s + (−0.173 − 0.138i)5-s + (−0.0767 + 0.406i)6-s + (−0.548 − 0.125i)7-s + (−0.622 + 0.782i)8-s + (0.359 − 0.746i)9-s + (−0.0332 − 0.219i)10-s + (0.325 − 0.929i)11-s + (−0.332 + 0.246i)12-s + (0.169 + 0.351i)13-s + (−0.316 − 0.464i)14-s + (0.0102 − 0.0913i)15-s + (−0.988 + 0.151i)16-s + (0.679 + 0.679i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.372 - 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.372 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116\)    =    \(2^{2} \cdot 29\)
Sign: $0.372 - 0.928i$
Analytic conductor: \(0.926264\)
Root analytic conductor: \(0.962426\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{116} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 116,\ (\ :1/2),\ 0.372 - 0.928i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22670 + 0.829745i\)
\(L(\frac12)\) \(\approx\) \(1.22670 + 0.829745i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.03 - 0.961i)T \)
29 \( 1 + (3.77 - 3.84i)T \)
good3 \( 1 + (-0.381 - 0.606i)T + (-1.30 + 2.70i)T^{2} \)
5 \( 1 + (0.388 + 0.309i)T + (1.11 + 4.87i)T^{2} \)
7 \( 1 + (1.45 + 0.331i)T + (6.30 + 3.03i)T^{2} \)
11 \( 1 + (-1.07 + 3.08i)T + (-8.60 - 6.85i)T^{2} \)
13 \( 1 + (-0.610 - 1.26i)T + (-8.10 + 10.1i)T^{2} \)
17 \( 1 + (-2.80 - 2.80i)T + 17iT^{2} \)
19 \( 1 + (4.35 + 2.73i)T + (8.24 + 17.1i)T^{2} \)
23 \( 1 + (-0.0143 + 0.0114i)T + (5.11 - 22.4i)T^{2} \)
31 \( 1 + (-0.262 - 2.32i)T + (-30.2 + 6.89i)T^{2} \)
37 \( 1 + (1.69 - 0.592i)T + (28.9 - 23.0i)T^{2} \)
41 \( 1 + (0.378 - 0.378i)T - 41iT^{2} \)
43 \( 1 + (3.80 + 0.429i)T + (41.9 + 9.56i)T^{2} \)
47 \( 1 + (-8.34 - 2.92i)T + (36.7 + 29.3i)T^{2} \)
53 \( 1 + (6.44 - 8.07i)T + (-11.7 - 51.6i)T^{2} \)
59 \( 1 - 14.5iT - 59T^{2} \)
61 \( 1 + (-0.184 + 0.116i)T + (26.4 - 54.9i)T^{2} \)
67 \( 1 + (-1.44 - 0.695i)T + (41.7 + 52.3i)T^{2} \)
71 \( 1 + (-11.0 + 5.30i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (-6.61 - 0.745i)T + (71.1 + 16.2i)T^{2} \)
79 \( 1 + (11.7 - 4.10i)T + (61.7 - 49.2i)T^{2} \)
83 \( 1 + (-3.90 + 0.892i)T + (74.7 - 36.0i)T^{2} \)
89 \( 1 + (-15.4 + 1.74i)T + (86.7 - 19.8i)T^{2} \)
97 \( 1 + (-8.35 - 5.25i)T + (42.0 + 87.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88375019344348553471808378560, −12.82227314395935590512529712286, −12.03624946005720292097796107015, −10.70975833602916864609838204317, −9.216402068519151328783976490396, −8.353531996412876243991698128995, −6.86019321501103044179562503685, −5.96914666080147699709668184739, −4.29655131761876825369040810952, −3.31741976212892889508717250223, 2.06558539952046943745299199582, 3.67899850421372048123041399718, 5.11885682947743076363168292005, 6.54428666702854622551873760565, 7.75128860729808631477646609051, 9.458044461733806357590638990615, 10.30771341140933516075238417059, 11.46057070148825730431387996853, 12.56365294768499641476262908003, 13.12694575174062378158415995422

Graph of the $Z$-function along the critical line