L(s) = 1 | + (0.810 + 1.15i)2-s + (−1.24 − 0.436i)3-s + (−0.687 + 1.87i)4-s + (1.45 + 0.332i)5-s + (−0.504 − 1.79i)6-s + (2.16 + 4.49i)7-s + (−2.73 + 0.724i)8-s + (−0.982 − 0.783i)9-s + (0.795 + 1.95i)10-s + (0.429 − 3.81i)11-s + (1.67 − 2.04i)12-s + (0.621 − 0.495i)13-s + (−3.45 + 6.14i)14-s + (−1.67 − 1.05i)15-s + (−3.05 − 2.58i)16-s + (2.22 − 2.22i)17-s + ⋯ |
L(s) = 1 | + (0.572 + 0.819i)2-s + (−0.719 − 0.251i)3-s + (−0.343 + 0.939i)4-s + (0.651 + 0.148i)5-s + (−0.205 − 0.734i)6-s + (0.817 + 1.69i)7-s + (−0.966 + 0.256i)8-s + (−0.327 − 0.261i)9-s + (0.251 + 0.619i)10-s + (0.129 − 1.15i)11-s + (0.483 − 0.589i)12-s + (0.172 − 0.137i)13-s + (−0.923 + 1.64i)14-s + (−0.431 − 0.271i)15-s + (−0.763 − 0.645i)16-s + (0.539 − 0.539i)17-s + ⋯ |
Λ(s)=(=(116s/2ΓC(s)L(s)(0.164−0.986i)Λ(2−s)
Λ(s)=(=(116s/2ΓC(s+1/2)L(s)(0.164−0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
116
= 22⋅29
|
Sign: |
0.164−0.986i
|
Analytic conductor: |
0.926264 |
Root analytic conductor: |
0.962426 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ116(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 116, ( :1/2), 0.164−0.986i)
|
Particular Values
L(1) |
≈ |
0.914415+0.774356i |
L(21) |
≈ |
0.914415+0.774356i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.810−1.15i)T |
| 29 | 1+(−3.73−3.87i)T |
good | 3 | 1+(1.24+0.436i)T+(2.34+1.87i)T2 |
| 5 | 1+(−1.45−0.332i)T+(4.50+2.16i)T2 |
| 7 | 1+(−2.16−4.49i)T+(−4.36+5.47i)T2 |
| 11 | 1+(−0.429+3.81i)T+(−10.7−2.44i)T2 |
| 13 | 1+(−0.621+0.495i)T+(2.89−12.6i)T2 |
| 17 | 1+(−2.22+2.22i)T−17iT2 |
| 19 | 1+(1.65+4.73i)T+(−14.8+11.8i)T2 |
| 23 | 1+(−3.02+0.689i)T+(20.7−9.97i)T2 |
| 31 | 1+(4.84−3.04i)T+(13.4−27.9i)T2 |
| 37 | 1+(2.57−0.290i)T+(36.0−8.23i)T2 |
| 41 | 1+(−0.977−0.977i)T+41iT2 |
| 43 | 1+(−5.24+8.34i)T+(−18.6−38.7i)T2 |
| 47 | 1+(7.11+0.801i)T+(45.8+10.4i)T2 |
| 53 | 1+(−1.32+5.81i)T+(−47.7−22.9i)T2 |
| 59 | 1−0.973iT−59T2 |
| 61 | 1+(1.52−4.36i)T+(−47.6−38.0i)T2 |
| 67 | 1+(2.79−3.50i)T+(−14.9−65.3i)T2 |
| 71 | 1+(−4.75−5.96i)T+(−15.7+69.2i)T2 |
| 73 | 1+(5.74−9.13i)T+(−31.6−65.7i)T2 |
| 79 | 1+(−4.41+0.497i)T+(77.0−17.5i)T2 |
| 83 | 1+(0.599−1.24i)T+(−51.7−64.8i)T2 |
| 89 | 1+(−1.59−2.53i)T+(−38.6+80.1i)T2 |
| 97 | 1+(3.39+9.69i)T+(−75.8+60.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.97297772045545590025370623552, −12.74350191368714435026036138441, −11.85350722434606567148303475778, −11.13153320722085222783511584514, −9.047046986615733118084237179417, −8.480867623463370389699326298420, −6.75052146100344785105412926697, −5.70067931003739202480444393357, −5.24060629088224894717474839414, −2.87295430756270247983179889728,
1.62157176214043520539554049360, 4.04185047338083802674417729041, 4.97805570307254183634715987378, 6.20955562243585502485748337381, 7.80414830259939474431833974401, 9.671070478945394504896585206504, 10.45797751784808903595069770342, 11.11060243369636311262826548348, 12.22493107703637621520152680522, 13.32259828281875619443590589484