L(s) = 1 | + 0.857·3-s + 5-s + 2.23·7-s − 2.26·9-s − 3.21·11-s + 3.25·13-s + 0.857·15-s + 0.870·17-s + 5.02·19-s + 1.91·21-s + 8.46·23-s + 25-s − 4.51·27-s + 29-s + 0.0467·31-s − 2.75·33-s + 2.23·35-s + 11.1·37-s + 2.78·39-s − 2.47·41-s + 2.87·43-s − 2.26·45-s + 2.20·47-s − 1.99·49-s + 0.746·51-s − 11.7·53-s − 3.21·55-s + ⋯ |
L(s) = 1 | + 0.495·3-s + 0.447·5-s + 0.845·7-s − 0.754·9-s − 0.970·11-s + 0.901·13-s + 0.221·15-s + 0.211·17-s + 1.15·19-s + 0.418·21-s + 1.76·23-s + 0.200·25-s − 0.869·27-s + 0.185·29-s + 0.00839·31-s − 0.480·33-s + 0.378·35-s + 1.82·37-s + 0.446·39-s − 0.386·41-s + 0.437·43-s − 0.337·45-s + 0.321·47-s − 0.284·49-s + 0.104·51-s − 1.61·53-s − 0.433·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.240834519 |
L(21) |
≈ |
2.240834519 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 3 | 1−0.857T+3T2 |
| 7 | 1−2.23T+7T2 |
| 11 | 1+3.21T+11T2 |
| 13 | 1−3.25T+13T2 |
| 17 | 1−0.870T+17T2 |
| 19 | 1−5.02T+19T2 |
| 23 | 1−8.46T+23T2 |
| 31 | 1−0.0467T+31T2 |
| 37 | 1−11.1T+37T2 |
| 41 | 1+2.47T+41T2 |
| 43 | 1−2.87T+43T2 |
| 47 | 1−2.20T+47T2 |
| 53 | 1+11.7T+53T2 |
| 59 | 1+7.68T+59T2 |
| 61 | 1+4.99T+61T2 |
| 67 | 1−11.6T+67T2 |
| 71 | 1+3.43T+71T2 |
| 73 | 1+10.1T+73T2 |
| 79 | 1−6.44T+79T2 |
| 83 | 1−15.4T+83T2 |
| 89 | 1−16.7T+89T2 |
| 97 | 1+7.16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.573806472521627510606059436679, −9.004091646518504259228457657671, −8.064906799861723339715545867817, −7.64675011836398438511222909282, −6.35618545730569317852916747172, −5.44735526931506380588356651845, −4.79239369429581937718802443433, −3.33150449249403906251612336501, −2.58334215227572763483064408962, −1.21399533910978966136811152060,
1.21399533910978966136811152060, 2.58334215227572763483064408962, 3.33150449249403906251612336501, 4.79239369429581937718802443433, 5.44735526931506380588356651845, 6.35618545730569317852916747172, 7.64675011836398438511222909282, 8.064906799861723339715545867817, 9.004091646518504259228457657671, 9.573806472521627510606059436679