L(s) = 1 | + 3.04·3-s + 5-s + 3.43·7-s + 6.26·9-s − 0.254·11-s − 2.66·13-s + 3.04·15-s + 0.449·17-s − 4.69·19-s + 10.4·21-s − 0.415·23-s + 25-s + 9.93·27-s + 29-s − 5.51·31-s − 0.774·33-s + 3.43·35-s − 7.29·37-s − 8.12·39-s − 4.86·41-s + 2.44·43-s + 6.26·45-s − 12.6·47-s + 4.77·49-s + 1.36·51-s + 8.60·53-s − 0.254·55-s + ⋯ |
L(s) = 1 | + 1.75·3-s + 0.447·5-s + 1.29·7-s + 2.08·9-s − 0.0767·11-s − 0.740·13-s + 0.785·15-s + 0.109·17-s − 1.07·19-s + 2.27·21-s − 0.0865·23-s + 0.200·25-s + 1.91·27-s + 0.185·29-s − 0.991·31-s − 0.134·33-s + 0.579·35-s − 1.19·37-s − 1.30·39-s − 0.759·41-s + 0.373·43-s + 0.933·45-s − 1.84·47-s + 0.681·49-s + 0.191·51-s + 1.18·53-s − 0.0343·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.516875428 |
L(21) |
≈ |
3.516875428 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 3 | 1−3.04T+3T2 |
| 7 | 1−3.43T+7T2 |
| 11 | 1+0.254T+11T2 |
| 13 | 1+2.66T+13T2 |
| 17 | 1−0.449T+17T2 |
| 19 | 1+4.69T+19T2 |
| 23 | 1+0.415T+23T2 |
| 31 | 1+5.51T+31T2 |
| 37 | 1+7.29T+37T2 |
| 41 | 1+4.86T+41T2 |
| 43 | 1−2.44T+43T2 |
| 47 | 1+12.6T+47T2 |
| 53 | 1−8.60T+53T2 |
| 59 | 1−4.16T+59T2 |
| 61 | 1−1.77T+61T2 |
| 67 | 1−11.1T+67T2 |
| 71 | 1+12.1T+71T2 |
| 73 | 1−4.11T+73T2 |
| 79 | 1−11.7T+79T2 |
| 83 | 1+0.185T+83T2 |
| 89 | 1+12.9T+89T2 |
| 97 | 1−9.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.681295010611156202041081217687, −8.722020755307850858941598180697, −8.356329709706303822011415875665, −7.54633122895044298946965410130, −6.78256103649841922287883016233, −5.30212568897666243472800531294, −4.47354503152814597240065825288, −3.46874519434779586050589746420, −2.29452224919892585739625483141, −1.71989866536344280379084609593,
1.71989866536344280379084609593, 2.29452224919892585739625483141, 3.46874519434779586050589746420, 4.47354503152814597240065825288, 5.30212568897666243472800531294, 6.78256103649841922287883016233, 7.54633122895044298946965410130, 8.356329709706303822011415875665, 8.722020755307850858941598180697, 9.681295010611156202041081217687