Properties

Label 2-1160-1.1-c1-0-26
Degree $2$
Conductor $1160$
Sign $-1$
Analytic cond. $9.26264$
Root an. cond. $3.04345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70·3-s − 5-s − 0.630·7-s − 0.0783·9-s − 3.70·11-s − 3.07·13-s − 1.70·15-s − 6.04·17-s − 1.36·19-s − 1.07·21-s + 1.70·23-s + 25-s − 5.26·27-s + 29-s − 4.78·31-s − 6.34·33-s + 0.630·35-s − 2.63·37-s − 5.26·39-s + 8.34·41-s + 1.12·43-s + 0.0783·45-s + 10.3·47-s − 6.60·49-s − 10.3·51-s + 9.02·53-s + 3.70·55-s + ⋯
L(s)  = 1  + 0.986·3-s − 0.447·5-s − 0.238·7-s − 0.0261·9-s − 1.11·11-s − 0.853·13-s − 0.441·15-s − 1.46·17-s − 0.314·19-s − 0.235·21-s + 0.356·23-s + 0.200·25-s − 1.01·27-s + 0.185·29-s − 0.859·31-s − 1.10·33-s + 0.106·35-s − 0.432·37-s − 0.842·39-s + 1.30·41-s + 0.171·43-s + 0.0116·45-s + 1.51·47-s − 0.943·49-s − 1.44·51-s + 1.23·53-s + 0.500·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(9.26264\)
Root analytic conductor: \(3.04345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good3 \( 1 - 1.70T + 3T^{2} \)
7 \( 1 + 0.630T + 7T^{2} \)
11 \( 1 + 3.70T + 11T^{2} \)
13 \( 1 + 3.07T + 13T^{2} \)
17 \( 1 + 6.04T + 17T^{2} \)
19 \( 1 + 1.36T + 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
31 \( 1 + 4.78T + 31T^{2} \)
37 \( 1 + 2.63T + 37T^{2} \)
41 \( 1 - 8.34T + 41T^{2} \)
43 \( 1 - 1.12T + 43T^{2} \)
47 \( 1 - 10.3T + 47T^{2} \)
53 \( 1 - 9.02T + 53T^{2} \)
59 \( 1 - 5.75T + 59T^{2} \)
61 \( 1 + 9.60T + 61T^{2} \)
67 \( 1 + 8.44T + 67T^{2} \)
71 \( 1 + 9.75T + 71T^{2} \)
73 \( 1 + 4.29T + 73T^{2} \)
79 \( 1 - 6.23T + 79T^{2} \)
83 \( 1 + 11.1T + 83T^{2} \)
89 \( 1 - 2.58T + 89T^{2} \)
97 \( 1 - 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.051152687093268761748124520537, −8.752577536541371190131994321339, −7.66969100124969520993081286884, −7.25699716096968861738755498117, −6.01581734009807422060920750782, −4.93240679859869155194793535534, −4.00752715486541866783501543151, −2.86580362066059098182257105810, −2.24726801042318342357932078609, 0, 2.24726801042318342357932078609, 2.86580362066059098182257105810, 4.00752715486541866783501543151, 4.93240679859869155194793535534, 6.01581734009807422060920750782, 7.25699716096968861738755498117, 7.66969100124969520993081286884, 8.752577536541371190131994321339, 9.051152687093268761748124520537

Graph of the $Z$-function along the critical line