L(s) = 1 | + 1.70·3-s − 5-s − 0.630·7-s − 0.0783·9-s − 3.70·11-s − 3.07·13-s − 1.70·15-s − 6.04·17-s − 1.36·19-s − 1.07·21-s + 1.70·23-s + 25-s − 5.26·27-s + 29-s − 4.78·31-s − 6.34·33-s + 0.630·35-s − 2.63·37-s − 5.26·39-s + 8.34·41-s + 1.12·43-s + 0.0783·45-s + 10.3·47-s − 6.60·49-s − 10.3·51-s + 9.02·53-s + 3.70·55-s + ⋯ |
L(s) = 1 | + 0.986·3-s − 0.447·5-s − 0.238·7-s − 0.0261·9-s − 1.11·11-s − 0.853·13-s − 0.441·15-s − 1.46·17-s − 0.314·19-s − 0.235·21-s + 0.356·23-s + 0.200·25-s − 1.01·27-s + 0.185·29-s − 0.859·31-s − 1.10·33-s + 0.106·35-s − 0.432·37-s − 0.842·39-s + 1.30·41-s + 0.171·43-s + 0.0116·45-s + 1.51·47-s − 0.943·49-s − 1.44·51-s + 1.23·53-s + 0.500·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 29 | 1−T |
good | 3 | 1−1.70T+3T2 |
| 7 | 1+0.630T+7T2 |
| 11 | 1+3.70T+11T2 |
| 13 | 1+3.07T+13T2 |
| 17 | 1+6.04T+17T2 |
| 19 | 1+1.36T+19T2 |
| 23 | 1−1.70T+23T2 |
| 31 | 1+4.78T+31T2 |
| 37 | 1+2.63T+37T2 |
| 41 | 1−8.34T+41T2 |
| 43 | 1−1.12T+43T2 |
| 47 | 1−10.3T+47T2 |
| 53 | 1−9.02T+53T2 |
| 59 | 1−5.75T+59T2 |
| 61 | 1+9.60T+61T2 |
| 67 | 1+8.44T+67T2 |
| 71 | 1+9.75T+71T2 |
| 73 | 1+4.29T+73T2 |
| 79 | 1−6.23T+79T2 |
| 83 | 1+11.1T+83T2 |
| 89 | 1−2.58T+89T2 |
| 97 | 1−13.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.051152687093268761748124520537, −8.752577536541371190131994321339, −7.66969100124969520993081286884, −7.25699716096968861738755498117, −6.01581734009807422060920750782, −4.93240679859869155194793535534, −4.00752715486541866783501543151, −2.86580362066059098182257105810, −2.24726801042318342357932078609, 0,
2.24726801042318342357932078609, 2.86580362066059098182257105810, 4.00752715486541866783501543151, 4.93240679859869155194793535534, 6.01581734009807422060920750782, 7.25699716096968861738755498117, 7.66969100124969520993081286884, 8.752577536541371190131994321339, 9.051152687093268761748124520537