Properties

Label 2-1160-1.1-c1-0-8
Degree $2$
Conductor $1160$
Sign $1$
Analytic cond. $9.26264$
Root an. cond. $3.04345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·3-s + 5-s + 4.57·7-s + 2.66·9-s + 5.84·11-s + 2.86·13-s − 2.37·15-s − 6.90·17-s − 2.24·19-s − 10.8·21-s − 0.981·23-s + 25-s + 0.798·27-s + 29-s + 4.18·31-s − 13.9·33-s + 4.57·35-s + 2.31·37-s − 6.81·39-s − 7.15·41-s − 4.90·43-s + 2.66·45-s + 6.85·47-s + 13.9·49-s + 16.4·51-s − 6.06·53-s + 5.84·55-s + ⋯
L(s)  = 1  − 1.37·3-s + 0.447·5-s + 1.73·7-s + 0.888·9-s + 1.76·11-s + 0.794·13-s − 0.614·15-s − 1.67·17-s − 0.514·19-s − 2.37·21-s − 0.204·23-s + 0.200·25-s + 0.153·27-s + 0.185·29-s + 0.751·31-s − 2.42·33-s + 0.773·35-s + 0.380·37-s − 1.09·39-s − 1.11·41-s − 0.748·43-s + 0.397·45-s + 0.999·47-s + 1.99·49-s + 2.30·51-s − 0.833·53-s + 0.788·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(9.26264\)
Root analytic conductor: \(3.04345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.477272815\)
\(L(\frac12)\) \(\approx\) \(1.477272815\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 + 2.37T + 3T^{2} \)
7 \( 1 - 4.57T + 7T^{2} \)
11 \( 1 - 5.84T + 11T^{2} \)
13 \( 1 - 2.86T + 13T^{2} \)
17 \( 1 + 6.90T + 17T^{2} \)
19 \( 1 + 2.24T + 19T^{2} \)
23 \( 1 + 0.981T + 23T^{2} \)
31 \( 1 - 4.18T + 31T^{2} \)
37 \( 1 - 2.31T + 37T^{2} \)
41 \( 1 + 7.15T + 41T^{2} \)
43 \( 1 + 4.90T + 43T^{2} \)
47 \( 1 - 6.85T + 47T^{2} \)
53 \( 1 + 6.06T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 - 10.9T + 61T^{2} \)
67 \( 1 - 7.30T + 67T^{2} \)
71 \( 1 - 9.51T + 71T^{2} \)
73 \( 1 + 12.7T + 73T^{2} \)
79 \( 1 - 2.44T + 79T^{2} \)
83 \( 1 + 9.93T + 83T^{2} \)
89 \( 1 + 9.41T + 89T^{2} \)
97 \( 1 + 4.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.990738479409832739612090624503, −8.770056319760676477320354069320, −8.413592644719380525798106885673, −6.88900402700430252443189005328, −6.45416110907705669585843371809, −5.57226137701354809297742460387, −4.66250519650252249717173174536, −4.08062410984427401847682360068, −2.00443879036301404979573102681, −1.08294990422208240121632186307, 1.08294990422208240121632186307, 2.00443879036301404979573102681, 4.08062410984427401847682360068, 4.66250519650252249717173174536, 5.57226137701354809297742460387, 6.45416110907705669585843371809, 6.88900402700430252443189005328, 8.413592644719380525798106885673, 8.770056319760676477320354069320, 9.990738479409832739612090624503

Graph of the $Z$-function along the critical line