L(s) = 1 | − 2.37·3-s + 5-s + 4.57·7-s + 2.66·9-s + 5.84·11-s + 2.86·13-s − 2.37·15-s − 6.90·17-s − 2.24·19-s − 10.8·21-s − 0.981·23-s + 25-s + 0.798·27-s + 29-s + 4.18·31-s − 13.9·33-s + 4.57·35-s + 2.31·37-s − 6.81·39-s − 7.15·41-s − 4.90·43-s + 2.66·45-s + 6.85·47-s + 13.9·49-s + 16.4·51-s − 6.06·53-s + 5.84·55-s + ⋯ |
L(s) = 1 | − 1.37·3-s + 0.447·5-s + 1.73·7-s + 0.888·9-s + 1.76·11-s + 0.794·13-s − 0.614·15-s − 1.67·17-s − 0.514·19-s − 2.37·21-s − 0.204·23-s + 0.200·25-s + 0.153·27-s + 0.185·29-s + 0.751·31-s − 2.42·33-s + 0.773·35-s + 0.380·37-s − 1.09·39-s − 1.11·41-s − 0.748·43-s + 0.397·45-s + 0.999·47-s + 1.99·49-s + 2.30·51-s − 0.833·53-s + 0.788·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.477272815 |
L(21) |
≈ |
1.477272815 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 3 | 1+2.37T+3T2 |
| 7 | 1−4.57T+7T2 |
| 11 | 1−5.84T+11T2 |
| 13 | 1−2.86T+13T2 |
| 17 | 1+6.90T+17T2 |
| 19 | 1+2.24T+19T2 |
| 23 | 1+0.981T+23T2 |
| 31 | 1−4.18T+31T2 |
| 37 | 1−2.31T+37T2 |
| 41 | 1+7.15T+41T2 |
| 43 | 1+4.90T+43T2 |
| 47 | 1−6.85T+47T2 |
| 53 | 1+6.06T+53T2 |
| 59 | 1−10.8T+59T2 |
| 61 | 1−10.9T+61T2 |
| 67 | 1−7.30T+67T2 |
| 71 | 1−9.51T+71T2 |
| 73 | 1+12.7T+73T2 |
| 79 | 1−2.44T+79T2 |
| 83 | 1+9.93T+83T2 |
| 89 | 1+9.41T+89T2 |
| 97 | 1+4.95T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.990738479409832739612090624503, −8.770056319760676477320354069320, −8.413592644719380525798106885673, −6.88900402700430252443189005328, −6.45416110907705669585843371809, −5.57226137701354809297742460387, −4.66250519650252249717173174536, −4.08062410984427401847682360068, −2.00443879036301404979573102681, −1.08294990422208240121632186307,
1.08294990422208240121632186307, 2.00443879036301404979573102681, 4.08062410984427401847682360068, 4.66250519650252249717173174536, 5.57226137701354809297742460387, 6.45416110907705669585843371809, 6.88900402700430252443189005328, 8.413592644719380525798106885673, 8.770056319760676477320354069320, 9.990738479409832739612090624503