Properties

Label 2-1160-1.1-c3-0-0
Degree $2$
Conductor $1160$
Sign $1$
Analytic cond. $68.4422$
Root an. cond. $8.27298$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.64·3-s + 5·5-s − 34.7·7-s + 65.9·9-s − 12.5·11-s − 25.0·13-s − 48.2·15-s − 59.0·17-s − 61.8·19-s + 334.·21-s + 21.8·23-s + 25·25-s − 375.·27-s + 29·29-s − 319.·31-s + 121.·33-s − 173.·35-s − 370.·37-s + 241.·39-s − 490.·41-s + 213.·43-s + 329.·45-s − 408.·47-s + 862.·49-s + 568.·51-s + 67.8·53-s − 62.8·55-s + ⋯
L(s)  = 1  − 1.85·3-s + 0.447·5-s − 1.87·7-s + 2.44·9-s − 0.344·11-s − 0.534·13-s − 0.829·15-s − 0.841·17-s − 0.746·19-s + 3.47·21-s + 0.198·23-s + 0.200·25-s − 2.67·27-s + 0.185·29-s − 1.85·31-s + 0.638·33-s − 0.838·35-s − 1.64·37-s + 0.991·39-s − 1.86·41-s + 0.758·43-s + 1.09·45-s − 1.26·47-s + 2.51·49-s + 1.56·51-s + 0.175·53-s − 0.154·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(68.4422\)
Root analytic conductor: \(8.27298\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1160,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.003741953558\)
\(L(\frac12)\) \(\approx\) \(0.003741953558\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 - 29T \)
good3 \( 1 + 9.64T + 27T^{2} \)
7 \( 1 + 34.7T + 343T^{2} \)
11 \( 1 + 12.5T + 1.33e3T^{2} \)
13 \( 1 + 25.0T + 2.19e3T^{2} \)
17 \( 1 + 59.0T + 4.91e3T^{2} \)
19 \( 1 + 61.8T + 6.85e3T^{2} \)
23 \( 1 - 21.8T + 1.21e4T^{2} \)
31 \( 1 + 319.T + 2.97e4T^{2} \)
37 \( 1 + 370.T + 5.06e4T^{2} \)
41 \( 1 + 490.T + 6.89e4T^{2} \)
43 \( 1 - 213.T + 7.95e4T^{2} \)
47 \( 1 + 408.T + 1.03e5T^{2} \)
53 \( 1 - 67.8T + 1.48e5T^{2} \)
59 \( 1 + 200.T + 2.05e5T^{2} \)
61 \( 1 + 559.T + 2.26e5T^{2} \)
67 \( 1 + 936.T + 3.00e5T^{2} \)
71 \( 1 - 577.T + 3.57e5T^{2} \)
73 \( 1 + 1.04e3T + 3.89e5T^{2} \)
79 \( 1 + 236.T + 4.93e5T^{2} \)
83 \( 1 + 1.21e3T + 5.71e5T^{2} \)
89 \( 1 - 1.12e3T + 7.04e5T^{2} \)
97 \( 1 + 498.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.670145429013768004668967709556, −8.900177438666038343083109806465, −7.17873629831697476223657439060, −6.76940155117212866247407078294, −6.05140371354414034524795934109, −5.38427966531705169744734702417, −4.44376163196853705610256767699, −3.26094953765759801370366883538, −1.79012664824546350147591471344, −0.03322278175610676689390214789, 0.03322278175610676689390214789, 1.79012664824546350147591471344, 3.26094953765759801370366883538, 4.44376163196853705610256767699, 5.38427966531705169744734702417, 6.05140371354414034524795934109, 6.76940155117212866247407078294, 7.17873629831697476223657439060, 8.900177438666038343083109806465, 9.670145429013768004668967709556

Graph of the $Z$-function along the critical line