L(s) = 1 | − 9.64·3-s + 5·5-s − 34.7·7-s + 65.9·9-s − 12.5·11-s − 25.0·13-s − 48.2·15-s − 59.0·17-s − 61.8·19-s + 334.·21-s + 21.8·23-s + 25·25-s − 375.·27-s + 29·29-s − 319.·31-s + 121.·33-s − 173.·35-s − 370.·37-s + 241.·39-s − 490.·41-s + 213.·43-s + 329.·45-s − 408.·47-s + 862.·49-s + 568.·51-s + 67.8·53-s − 62.8·55-s + ⋯ |
L(s) = 1 | − 1.85·3-s + 0.447·5-s − 1.87·7-s + 2.44·9-s − 0.344·11-s − 0.534·13-s − 0.829·15-s − 0.841·17-s − 0.746·19-s + 3.47·21-s + 0.198·23-s + 0.200·25-s − 2.67·27-s + 0.185·29-s − 1.85·31-s + 0.638·33-s − 0.838·35-s − 1.64·37-s + 0.991·39-s − 1.86·41-s + 0.758·43-s + 1.09·45-s − 1.26·47-s + 2.51·49-s + 1.56·51-s + 0.175·53-s − 0.154·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1160s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.003741953558 |
L(21) |
≈ |
0.003741953558 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−5T |
| 29 | 1−29T |
good | 3 | 1+9.64T+27T2 |
| 7 | 1+34.7T+343T2 |
| 11 | 1+12.5T+1.33e3T2 |
| 13 | 1+25.0T+2.19e3T2 |
| 17 | 1+59.0T+4.91e3T2 |
| 19 | 1+61.8T+6.85e3T2 |
| 23 | 1−21.8T+1.21e4T2 |
| 31 | 1+319.T+2.97e4T2 |
| 37 | 1+370.T+5.06e4T2 |
| 41 | 1+490.T+6.89e4T2 |
| 43 | 1−213.T+7.95e4T2 |
| 47 | 1+408.T+1.03e5T2 |
| 53 | 1−67.8T+1.48e5T2 |
| 59 | 1+200.T+2.05e5T2 |
| 61 | 1+559.T+2.26e5T2 |
| 67 | 1+936.T+3.00e5T2 |
| 71 | 1−577.T+3.57e5T2 |
| 73 | 1+1.04e3T+3.89e5T2 |
| 79 | 1+236.T+4.93e5T2 |
| 83 | 1+1.21e3T+5.71e5T2 |
| 89 | 1−1.12e3T+7.04e5T2 |
| 97 | 1+498.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.670145429013768004668967709556, −8.900177438666038343083109806465, −7.17873629831697476223657439060, −6.76940155117212866247407078294, −6.05140371354414034524795934109, −5.38427966531705169744734702417, −4.44376163196853705610256767699, −3.26094953765759801370366883538, −1.79012664824546350147591471344, −0.03322278175610676689390214789,
0.03322278175610676689390214789, 1.79012664824546350147591471344, 3.26094953765759801370366883538, 4.44376163196853705610256767699, 5.38427966531705169744734702417, 6.05140371354414034524795934109, 6.76940155117212866247407078294, 7.17873629831697476223657439060, 8.900177438666038343083109806465, 9.670145429013768004668967709556