L(s) = 1 | − 0.528·3-s − 5·5-s − 17.5·7-s − 26.7·9-s − 24.1·11-s − 79.1·13-s + 2.64·15-s − 6.40·17-s − 127.·19-s + 9.26·21-s − 52.0·23-s + 25·25-s + 28.3·27-s + 29·29-s + 89.9·31-s + 12.7·33-s + 87.6·35-s − 71.2·37-s + 41.8·39-s + 34.0·41-s + 355.·43-s + 133.·45-s − 600.·47-s − 35.7·49-s + 3.38·51-s + 738.·53-s + 120.·55-s + ⋯ |
L(s) = 1 | − 0.101·3-s − 0.447·5-s − 0.946·7-s − 0.989·9-s − 0.662·11-s − 1.68·13-s + 0.0454·15-s − 0.0913·17-s − 1.54·19-s + 0.0962·21-s − 0.472·23-s + 0.200·25-s + 0.202·27-s + 0.185·29-s + 0.521·31-s + 0.0673·33-s + 0.423·35-s − 0.316·37-s + 0.171·39-s + 0.129·41-s + 1.26·43-s + 0.442·45-s − 1.86·47-s − 0.104·49-s + 0.00929·51-s + 1.91·53-s + 0.296·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1160s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.2347252654 |
L(21) |
≈ |
0.2347252654 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+5T |
| 29 | 1−29T |
good | 3 | 1+0.528T+27T2 |
| 7 | 1+17.5T+343T2 |
| 11 | 1+24.1T+1.33e3T2 |
| 13 | 1+79.1T+2.19e3T2 |
| 17 | 1+6.40T+4.91e3T2 |
| 19 | 1+127.T+6.85e3T2 |
| 23 | 1+52.0T+1.21e4T2 |
| 31 | 1−89.9T+2.97e4T2 |
| 37 | 1+71.2T+5.06e4T2 |
| 41 | 1−34.0T+6.89e4T2 |
| 43 | 1−355.T+7.95e4T2 |
| 47 | 1+600.T+1.03e5T2 |
| 53 | 1−738.T+1.48e5T2 |
| 59 | 1+151.T+2.05e5T2 |
| 61 | 1+581.T+2.26e5T2 |
| 67 | 1−74.5T+3.00e5T2 |
| 71 | 1−281.T+3.57e5T2 |
| 73 | 1+578.T+3.89e5T2 |
| 79 | 1−549.T+4.93e5T2 |
| 83 | 1+76.0T+5.71e5T2 |
| 89 | 1+406.T+7.04e5T2 |
| 97 | 1+1.16e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.463269640967706047176590201820, −8.541211019965665049133479188100, −7.81993325378592267584047433273, −6.88293269621421063884655919591, −6.10639413846455198459391047531, −5.13695553550460893813683844552, −4.22153237544055161836660713019, −2.99829569636976870056863295574, −2.32630673924041099380254854433, −0.22989929427295113686550148219,
0.22989929427295113686550148219, 2.32630673924041099380254854433, 2.99829569636976870056863295574, 4.22153237544055161836660713019, 5.13695553550460893813683844552, 6.10639413846455198459391047531, 6.88293269621421063884655919591, 7.81993325378592267584047433273, 8.541211019965665049133479188100, 9.463269640967706047176590201820