L(s) = 1 | − 8.44·3-s + 5·5-s + 16.2·7-s + 44.3·9-s − 0.0653·11-s − 34.3·13-s − 42.2·15-s − 71.6·17-s + 34.2·19-s − 136.·21-s + 68.5·23-s + 25·25-s − 146.·27-s − 29·29-s − 280.·31-s + 0.552·33-s + 81.0·35-s + 403.·37-s + 289.·39-s − 318.·41-s − 273.·43-s + 221.·45-s + 518.·47-s − 80.1·49-s + 605.·51-s − 492.·53-s − 0.326·55-s + ⋯ |
L(s) = 1 | − 1.62·3-s + 0.447·5-s + 0.875·7-s + 1.64·9-s − 0.00179·11-s − 0.732·13-s − 0.726·15-s − 1.02·17-s + 0.413·19-s − 1.42·21-s + 0.621·23-s + 0.200·25-s − 1.04·27-s − 0.185·29-s − 1.62·31-s + 0.00291·33-s + 0.391·35-s + 1.79·37-s + 1.19·39-s − 1.21·41-s − 0.969·43-s + 0.734·45-s + 1.60·47-s − 0.233·49-s + 1.66·51-s − 1.27·53-s − 0.000801·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1160s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−5T |
| 29 | 1+29T |
good | 3 | 1+8.44T+27T2 |
| 7 | 1−16.2T+343T2 |
| 11 | 1+0.0653T+1.33e3T2 |
| 13 | 1+34.3T+2.19e3T2 |
| 17 | 1+71.6T+4.91e3T2 |
| 19 | 1−34.2T+6.85e3T2 |
| 23 | 1−68.5T+1.21e4T2 |
| 31 | 1+280.T+2.97e4T2 |
| 37 | 1−403.T+5.06e4T2 |
| 41 | 1+318.T+6.89e4T2 |
| 43 | 1+273.T+7.95e4T2 |
| 47 | 1−518.T+1.03e5T2 |
| 53 | 1+492.T+1.48e5T2 |
| 59 | 1−861.T+2.05e5T2 |
| 61 | 1−125.T+2.26e5T2 |
| 67 | 1−1.03e3T+3.00e5T2 |
| 71 | 1+91.9T+3.57e5T2 |
| 73 | 1−936.T+3.89e5T2 |
| 79 | 1+768.T+4.93e5T2 |
| 83 | 1−666.T+5.71e5T2 |
| 89 | 1−736.T+7.04e5T2 |
| 97 | 1+1.34e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.213782719806049952217996588694, −8.057866623359042349468440214382, −7.06327354768894779708528907706, −6.47323258162652762101611186582, −5.30884823049643253771071556349, −5.11988914680641522474192705937, −4.04856419690327727213677573137, −2.31540376413599944374847371773, −1.20320400037759451762651098439, 0,
1.20320400037759451762651098439, 2.31540376413599944374847371773, 4.04856419690327727213677573137, 5.11988914680641522474192705937, 5.30884823049643253771071556349, 6.47323258162652762101611186582, 7.06327354768894779708528907706, 8.057866623359042349468440214382, 9.213782719806049952217996588694