L(s) = 1 | + 2-s − 1.61·3-s + 4-s − 5-s − 1.61·6-s − 0.618·7-s + 8-s + 1.61·9-s − 10-s − 1.61·12-s + 1.61·13-s − 0.618·14-s + 1.61·15-s + 16-s + 0.618·17-s + 1.61·18-s − 20-s + 1.00·21-s + 1.61·23-s − 1.61·24-s + 25-s + 1.61·26-s − 27-s − 0.618·28-s − 29-s + 1.61·30-s − 0.618·31-s + ⋯ |
L(s) = 1 | + 2-s − 1.61·3-s + 4-s − 5-s − 1.61·6-s − 0.618·7-s + 8-s + 1.61·9-s − 10-s − 1.61·12-s + 1.61·13-s − 0.618·14-s + 1.61·15-s + 16-s + 0.618·17-s + 1.61·18-s − 20-s + 1.00·21-s + 1.61·23-s − 1.61·24-s + 25-s + 1.61·26-s − 27-s − 0.618·28-s − 29-s + 1.61·30-s − 0.618·31-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1160
= 23⋅5⋅29
|
Sign: |
1
|
Analytic conductor: |
0.578915 |
Root analytic conductor: |
0.760864 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1160(579,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1160, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.050104762 |
L(21) |
≈ |
1.050104762 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+T |
| 29 | 1+T |
good | 3 | 1+1.61T+T2 |
| 7 | 1+0.618T+T2 |
| 11 | 1−T2 |
| 13 | 1−1.61T+T2 |
| 17 | 1−0.618T+T2 |
| 19 | 1−T2 |
| 23 | 1−1.61T+T2 |
| 31 | 1+0.618T+T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1−0.618T+T2 |
| 47 | 1−T2 |
| 53 | 1+0.618T+T2 |
| 59 | 1+1.61T+T2 |
| 61 | 1−1.61T+T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−0.618T+T2 |
| 79 | 1−1.61T+T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1+1.61T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61538254760137338434849738194, −9.319628248660324443625541919409, −8.026497732542470937651210227160, −7.07178375486281940218648856737, −6.48277511298224935502289049105, −5.69465854576682597227114274798, −4.97309202629132727401051446891, −3.95095855178449911771354271405, −3.25267216476052250460876334024, −1.15959764657448848261523418261,
1.15959764657448848261523418261, 3.25267216476052250460876334024, 3.95095855178449911771354271405, 4.97309202629132727401051446891, 5.69465854576682597227114274798, 6.48277511298224935502289049105, 7.07178375486281940218648856737, 8.026497732542470937651210227160, 9.319628248660324443625541919409, 10.61538254760137338434849738194