L(s) = 1 | + 2-s − 1.61·3-s + 4-s − 5-s − 1.61·6-s − 0.618·7-s + 8-s + 1.61·9-s − 10-s − 1.61·12-s + 1.61·13-s − 0.618·14-s + 1.61·15-s + 16-s + 0.618·17-s + 1.61·18-s − 20-s + 1.00·21-s + 1.61·23-s − 1.61·24-s + 25-s + 1.61·26-s − 27-s − 0.618·28-s − 29-s + 1.61·30-s − 0.618·31-s + ⋯ |
L(s) = 1 | + 2-s − 1.61·3-s + 4-s − 5-s − 1.61·6-s − 0.618·7-s + 8-s + 1.61·9-s − 10-s − 1.61·12-s + 1.61·13-s − 0.618·14-s + 1.61·15-s + 16-s + 0.618·17-s + 1.61·18-s − 20-s + 1.00·21-s + 1.61·23-s − 1.61·24-s + 25-s + 1.61·26-s − 27-s − 0.618·28-s − 29-s + 1.61·30-s − 0.618·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.050104762\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.050104762\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 + T \) |
good | 3 | \( 1 + 1.61T + T^{2} \) |
| 7 | \( 1 + 0.618T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - 1.61T + T^{2} \) |
| 17 | \( 1 - 0.618T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 1.61T + T^{2} \) |
| 31 | \( 1 + 0.618T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 0.618T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 0.618T + T^{2} \) |
| 59 | \( 1 + 1.61T + T^{2} \) |
| 61 | \( 1 - 1.61T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 0.618T + T^{2} \) |
| 79 | \( 1 - 1.61T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + 1.61T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61538254760137338434849738194, −9.319628248660324443625541919409, −8.026497732542470937651210227160, −7.07178375486281940218648856737, −6.48277511298224935502289049105, −5.69465854576682597227114274798, −4.97309202629132727401051446891, −3.95095855178449911771354271405, −3.25267216476052250460876334024, −1.15959764657448848261523418261,
1.15959764657448848261523418261, 3.25267216476052250460876334024, 3.95095855178449911771354271405, 4.97309202629132727401051446891, 5.69465854576682597227114274798, 6.48277511298224935502289049105, 7.07178375486281940218648856737, 8.026497732542470937651210227160, 9.319628248660324443625541919409, 10.61538254760137338434849738194