L(s) = 1 | + 2-s + 0.618·3-s + 4-s − 5-s + 0.618·6-s + 1.61·7-s + 8-s − 0.618·9-s − 10-s + 0.618·12-s − 0.618·13-s + 1.61·14-s − 0.618·15-s + 16-s − 1.61·17-s − 0.618·18-s − 20-s + 1.00·21-s − 0.618·23-s + 0.618·24-s + 25-s − 0.618·26-s − 27-s + 1.61·28-s − 29-s − 0.618·30-s + 1.61·31-s + ⋯ |
L(s) = 1 | + 2-s + 0.618·3-s + 4-s − 5-s + 0.618·6-s + 1.61·7-s + 8-s − 0.618·9-s − 10-s + 0.618·12-s − 0.618·13-s + 1.61·14-s − 0.618·15-s + 16-s − 1.61·17-s − 0.618·18-s − 20-s + 1.00·21-s − 0.618·23-s + 0.618·24-s + 25-s − 0.618·26-s − 27-s + 1.61·28-s − 29-s − 0.618·30-s + 1.61·31-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1160
= 23⋅5⋅29
|
Sign: |
1
|
Analytic conductor: |
0.578915 |
Root analytic conductor: |
0.760864 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1160(579,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1160, ( :0), 1)
|
Particular Values
L(21) |
≈ |
2.126784761 |
L(21) |
≈ |
2.126784761 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+T |
| 29 | 1+T |
good | 3 | 1−0.618T+T2 |
| 7 | 1−1.61T+T2 |
| 11 | 1−T2 |
| 13 | 1+0.618T+T2 |
| 17 | 1+1.61T+T2 |
| 19 | 1−T2 |
| 23 | 1+0.618T+T2 |
| 31 | 1−1.61T+T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1+1.61T+T2 |
| 47 | 1−T2 |
| 53 | 1−1.61T+T2 |
| 59 | 1−0.618T+T2 |
| 61 | 1+0.618T+T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1+1.61T+T2 |
| 79 | 1+0.618T+T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−0.618T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25297148081094490810686177902, −8.787478978343084718482855872707, −8.221363363011877229832579870045, −7.58744122980974681960875477848, −6.73584101265995587748568802544, −5.48041984461398223489674192397, −4.61487544549217139940640306946, −4.05929876473963900584595126359, −2.82884429279692423108327934738, −1.92480588808352345743983604656,
1.92480588808352345743983604656, 2.82884429279692423108327934738, 4.05929876473963900584595126359, 4.61487544549217139940640306946, 5.48041984461398223489674192397, 6.73584101265995587748568802544, 7.58744122980974681960875477848, 8.221363363011877229832579870045, 8.787478978343084718482855872707, 10.25297148081094490810686177902