L(s) = 1 | + 2-s + 0.618·3-s + 4-s − 5-s + 0.618·6-s + 1.61·7-s + 8-s − 0.618·9-s − 10-s + 0.618·12-s − 0.618·13-s + 1.61·14-s − 0.618·15-s + 16-s − 1.61·17-s − 0.618·18-s − 20-s + 1.00·21-s − 0.618·23-s + 0.618·24-s + 25-s − 0.618·26-s − 27-s + 1.61·28-s − 29-s − 0.618·30-s + 1.61·31-s + ⋯ |
L(s) = 1 | + 2-s + 0.618·3-s + 4-s − 5-s + 0.618·6-s + 1.61·7-s + 8-s − 0.618·9-s − 10-s + 0.618·12-s − 0.618·13-s + 1.61·14-s − 0.618·15-s + 16-s − 1.61·17-s − 0.618·18-s − 20-s + 1.00·21-s − 0.618·23-s + 0.618·24-s + 25-s − 0.618·26-s − 27-s + 1.61·28-s − 29-s − 0.618·30-s + 1.61·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.126784761\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.126784761\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 + T \) |
good | 3 | \( 1 - 0.618T + T^{2} \) |
| 7 | \( 1 - 1.61T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 0.618T + T^{2} \) |
| 17 | \( 1 + 1.61T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 0.618T + T^{2} \) |
| 31 | \( 1 - 1.61T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 1.61T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.61T + T^{2} \) |
| 59 | \( 1 - 0.618T + T^{2} \) |
| 61 | \( 1 + 0.618T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 1.61T + T^{2} \) |
| 79 | \( 1 + 0.618T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 0.618T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25297148081094490810686177902, −8.787478978343084718482855872707, −8.221363363011877229832579870045, −7.58744122980974681960875477848, −6.73584101265995587748568802544, −5.48041984461398223489674192397, −4.61487544549217139940640306946, −4.05929876473963900584595126359, −2.82884429279692423108327934738, −1.92480588808352345743983604656,
1.92480588808352345743983604656, 2.82884429279692423108327934738, 4.05929876473963900584595126359, 4.61487544549217139940640306946, 5.48041984461398223489674192397, 6.73584101265995587748568802544, 7.58744122980974681960875477848, 8.221363363011877229832579870045, 8.787478978343084718482855872707, 10.25297148081094490810686177902