L(s) = 1 | − 2-s − 4-s − 2·5-s − 4·7-s + 3·8-s + 2·10-s − 4·11-s + 13-s + 4·14-s − 16-s − 2·17-s + 2·20-s + 4·22-s − 25-s − 26-s + 4·28-s + 10·29-s + 4·31-s − 5·32-s + 2·34-s + 8·35-s − 2·37-s − 6·40-s − 6·41-s − 12·43-s + 4·44-s + 9·49-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.894·5-s − 1.51·7-s + 1.06·8-s + 0.632·10-s − 1.20·11-s + 0.277·13-s + 1.06·14-s − 1/4·16-s − 0.485·17-s + 0.447·20-s + 0.852·22-s − 1/5·25-s − 0.196·26-s + 0.755·28-s + 1.85·29-s + 0.718·31-s − 0.883·32-s + 0.342·34-s + 1.35·35-s − 0.328·37-s − 0.948·40-s − 0.937·41-s − 1.82·43-s + 0.603·44-s + 9/7·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + T + p T^{2} \) |
| 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 10 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 2 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.08852185820390065936271418820, −12.03518823883711509314697782796, −10.56874363227147435358239986991, −9.880880528421929637795747545010, −8.676495022208841081429592670025, −7.80846844879300530070948409490, −6.52300807259623823318085089821, −4.73928185911620471935520190469, −3.25802804921991097162798742437, 0,
3.25802804921991097162798742437, 4.73928185911620471935520190469, 6.52300807259623823318085089821, 7.80846844879300530070948409490, 8.676495022208841081429592670025, 9.880880528421929637795747545010, 10.56874363227147435358239986991, 12.03518823883711509314697782796, 13.08852185820390065936271418820