Properties

Label 2-117-117.103-c1-0-11
Degree 22
Conductor 117117
Sign 0.9940.106i-0.994 - 0.106i
Analytic cond. 0.9342490.934249
Root an. cond. 0.9665650.966565
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.5 − 0.866i)3-s + (−1 + 1.73i)4-s + (−3 − 1.73i)5-s + (−3 + 1.73i)7-s + (1.5 + 2.59i)9-s + (3 − 1.73i)11-s + (3 − 1.73i)12-s + (−2.5 − 2.59i)13-s + (3 + 5.19i)15-s + (−1.99 − 3.46i)16-s − 3·17-s + 3.46i·19-s + (6 − 3.46i)20-s + 6·21-s + (−1.5 + 2.59i)23-s + ⋯
L(s)  = 1  + (−0.866 − 0.499i)3-s + (−0.5 + 0.866i)4-s + (−1.34 − 0.774i)5-s + (−1.13 + 0.654i)7-s + (0.5 + 0.866i)9-s + (0.904 − 0.522i)11-s + (0.866 − 0.499i)12-s + (−0.693 − 0.720i)13-s + (0.774 + 1.34i)15-s + (−0.499 − 0.866i)16-s − 0.727·17-s + 0.794i·19-s + (1.34 − 0.774i)20-s + 1.30·21-s + (−0.312 + 0.541i)23-s + ⋯

Functional equation

Λ(s)=(117s/2ΓC(s)L(s)=((0.9940.106i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 - 0.106i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(117s/2ΓC(s+1/2)L(s)=((0.9940.106i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.994 - 0.106i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 117117    =    32133^{2} \cdot 13
Sign: 0.9940.106i-0.994 - 0.106i
Analytic conductor: 0.9342490.934249
Root analytic conductor: 0.9665650.966565
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ117(103,)\chi_{117} (103, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 11
Selberg data: (2, 117, ( :1/2), 0.9940.106i)(2,\ 117,\ (\ :1/2),\ -0.994 - 0.106i)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.5+0.866i)T 1 + (1.5 + 0.866i)T
13 1+(2.5+2.59i)T 1 + (2.5 + 2.59i)T
good2 1+(11.73i)T2 1 + (1 - 1.73i)T^{2}
5 1+(3+1.73i)T+(2.5+4.33i)T2 1 + (3 + 1.73i)T + (2.5 + 4.33i)T^{2}
7 1+(31.73i)T+(3.56.06i)T2 1 + (3 - 1.73i)T + (3.5 - 6.06i)T^{2}
11 1+(3+1.73i)T+(5.59.52i)T2 1 + (-3 + 1.73i)T + (5.5 - 9.52i)T^{2}
17 1+3T+17T2 1 + 3T + 17T^{2}
19 13.46iT19T2 1 - 3.46iT - 19T^{2}
23 1+(1.52.59i)T+(11.519.9i)T2 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2}
29 1+(3+5.19i)T+(14.5+25.1i)T2 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2}
31 1+(31.73i)T+(15.5+26.8i)T2 1 + (-3 - 1.73i)T + (15.5 + 26.8i)T^{2}
37 16.92iT37T2 1 - 6.92iT - 37T^{2}
41 1+(6+3.46i)T+(20.5+35.5i)T2 1 + (6 + 3.46i)T + (20.5 + 35.5i)T^{2}
43 1+(0.50.866i)T+(21.5+37.2i)T2 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2}
47 1+(63.46i)T+(23.540.7i)T2 1 + (6 - 3.46i)T + (23.5 - 40.7i)T^{2}
53 1+9T+53T2 1 + 9T + 53T^{2}
59 1+(31.73i)T+(29.5+51.0i)T2 1 + (-3 - 1.73i)T + (29.5 + 51.0i)T^{2}
61 1+(3.5+6.06i)T+(30.5+52.8i)T2 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2}
67 1+(33.5+58.0i)T2 1 + (33.5 + 58.0i)T^{2}
71 171T2 1 - 71T^{2}
73 1+10.3iT73T2 1 + 10.3iT - 73T^{2}
79 1+(0.5+0.866i)T+(39.5+68.4i)T2 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2}
83 1+(6+3.46i)T+(41.571.8i)T2 1 + (-6 + 3.46i)T + (41.5 - 71.8i)T^{2}
89 13.46iT89T2 1 - 3.46iT - 89T^{2}
97 1+(6+3.46i)T+(48.584.0i)T2 1 + (-6 + 3.46i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.64976601342064648747269327247, −12.12900601149315251790140746565, −11.48412798336320981215192535822, −9.681905834105698325070932089493, −8.477662955428252514888537980504, −7.63110419811954353490859704665, −6.28951309323056334665448752408, −4.76331302955890611710624149097, −3.47613086007436455330254655724, 0, 3.80247328858458021016633500459, 4.64371638059730855232114849506, 6.54728851093017236777411448367, 6.99488438903327558810410830610, 9.144995044936558140044674438003, 10.00178610684291064617627635800, 10.94226950350821712296634159637, 11.75438835735683116415305978526, 12.90540293630586733890153355394

Graph of the ZZ-function along the critical line