L(s) = 1 | + (−1.5 − 0.866i)3-s + (−1 + 1.73i)4-s + (−3 − 1.73i)5-s + (−3 + 1.73i)7-s + (1.5 + 2.59i)9-s + (3 − 1.73i)11-s + (3 − 1.73i)12-s + (−2.5 − 2.59i)13-s + (3 + 5.19i)15-s + (−1.99 − 3.46i)16-s − 3·17-s + 3.46i·19-s + (6 − 3.46i)20-s + 6·21-s + (−1.5 + 2.59i)23-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)3-s + (−0.5 + 0.866i)4-s + (−1.34 − 0.774i)5-s + (−1.13 + 0.654i)7-s + (0.5 + 0.866i)9-s + (0.904 − 0.522i)11-s + (0.866 − 0.499i)12-s + (−0.693 − 0.720i)13-s + (0.774 + 1.34i)15-s + (−0.499 − 0.866i)16-s − 0.727·17-s + 0.794i·19-s + (1.34 − 0.774i)20-s + 1.30·21-s + (−0.312 + 0.541i)23-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.994−0.106i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(−0.994−0.106i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.994−0.106i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 117, ( :1/2), −0.994−0.106i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.5+0.866i)T |
| 13 | 1+(2.5+2.59i)T |
good | 2 | 1+(1−1.73i)T2 |
| 5 | 1+(3+1.73i)T+(2.5+4.33i)T2 |
| 7 | 1+(3−1.73i)T+(3.5−6.06i)T2 |
| 11 | 1+(−3+1.73i)T+(5.5−9.52i)T2 |
| 17 | 1+3T+17T2 |
| 19 | 1−3.46iT−19T2 |
| 23 | 1+(1.5−2.59i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−3−1.73i)T+(15.5+26.8i)T2 |
| 37 | 1−6.92iT−37T2 |
| 41 | 1+(6+3.46i)T+(20.5+35.5i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−21.5+37.2i)T2 |
| 47 | 1+(6−3.46i)T+(23.5−40.7i)T2 |
| 53 | 1+9T+53T2 |
| 59 | 1+(−3−1.73i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.5+6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(33.5+58.0i)T2 |
| 71 | 1−71T2 |
| 73 | 1+10.3iT−73T2 |
| 79 | 1+(0.5+0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−6+3.46i)T+(41.5−71.8i)T2 |
| 89 | 1−3.46iT−89T2 |
| 97 | 1+(−6+3.46i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64976601342064648747269327247, −12.12900601149315251790140746565, −11.48412798336320981215192535822, −9.681905834105698325070932089493, −8.477662955428252514888537980504, −7.63110419811954353490859704665, −6.28951309323056334665448752408, −4.76331302955890611710624149097, −3.47613086007436455330254655724, 0,
3.80247328858458021016633500459, 4.64371638059730855232114849506, 6.54728851093017236777411448367, 6.99488438903327558810410830610, 9.144995044936558140044674438003, 10.00178610684291064617627635800, 10.94226950350821712296634159637, 11.75438835735683116415305978526, 12.90540293630586733890153355394