L(s) = 1 | + (−1.5 − 0.866i)3-s + (−1 + 1.73i)4-s + (3 + 1.73i)5-s + (3 − 1.73i)7-s + (1.5 + 2.59i)9-s + (−3 + 1.73i)11-s + (3 − 1.73i)12-s + (3.5 + 0.866i)13-s + (−3 − 5.19i)15-s + (−1.99 − 3.46i)16-s − 3·17-s − 3.46i·19-s + (−6 + 3.46i)20-s − 6·21-s + (−1.5 + 2.59i)23-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)3-s + (−0.5 + 0.866i)4-s + (1.34 + 0.774i)5-s + (1.13 − 0.654i)7-s + (0.5 + 0.866i)9-s + (−0.904 + 0.522i)11-s + (0.866 − 0.499i)12-s + (0.970 + 0.240i)13-s + (−0.774 − 1.34i)15-s + (−0.499 − 0.866i)16-s − 0.727·17-s − 0.794i·19-s + (−1.34 + 0.774i)20-s − 1.30·21-s + (−0.312 + 0.541i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.898 - 0.439i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.898 - 0.439i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.930548 + 0.215707i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.930548 + 0.215707i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 + 0.866i)T \) |
| 13 | \( 1 + (-3.5 - 0.866i)T \) |
good | 2 | \( 1 + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-3 - 1.73i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-3 + 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3 - 1.73i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 + 3.46iT - 19T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3 + 1.73i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.92iT - 37T^{2} \) |
| 41 | \( 1 + (-6 - 3.46i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6 + 3.46i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (3 + 1.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 10.3iT - 73T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6 - 3.46i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 3.46iT - 89T^{2} \) |
| 97 | \( 1 + (6 - 3.46i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.49569157970577363403370950556, −12.86317277508308558527064176802, −11.30218504250711364717709228963, −10.79949453063832226856875051186, −9.485335105771080245116572571383, −7.926302299218360394745824417957, −7.04529436021832103989945153038, −5.71602598961146143900982904690, −4.45005616763899648969067025496, −2.14542912532483567094193497700,
1.54224651653089735279217434710, 4.66233783353132560538996593963, 5.53403650498432787604332572436, 6.03034423006051940481737598954, 8.511129000410489019414212713400, 9.270092783501581373863127419904, 10.45949931341699129739439165294, 11.02991091580983695638037644385, 12.53437027023792065317927091281, 13.47508031199557530117133950960