L(s) = 1 | + (1.97 − 1.14i)2-s + (0.833 + 1.51i)3-s + (1.60 − 2.78i)4-s + (−2.78 − 1.60i)5-s + (3.38 + 2.05i)6-s + (−2.09 + 1.21i)7-s − 2.76i·8-s + (−1.61 + 2.53i)9-s − 7.34·10-s + (1.27 − 0.737i)11-s + (5.56 + 0.120i)12-s + (3.56 + 0.535i)13-s + (−2.76 + 4.79i)14-s + (0.121 − 5.56i)15-s + (0.0535 + 0.0927i)16-s − 5.12·17-s + ⋯ |
L(s) = 1 | + (1.39 − 0.807i)2-s + (0.481 + 0.876i)3-s + (0.803 − 1.39i)4-s + (−1.24 − 0.719i)5-s + (1.38 + 0.837i)6-s + (−0.793 + 0.457i)7-s − 0.978i·8-s + (−0.537 + 0.843i)9-s − 2.32·10-s + (0.385 − 0.222i)11-s + (1.60 + 0.0348i)12-s + (0.988 + 0.148i)13-s + (−0.739 + 1.28i)14-s + (0.0312 − 1.43i)15-s + (0.0133 + 0.0231i)16-s − 1.24·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.856+0.515i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.856+0.515i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.856+0.515i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.856+0.515i)
|
Particular Values
L(1) |
≈ |
1.82236−0.505916i |
L(21) |
≈ |
1.82236−0.505916i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.833−1.51i)T |
| 13 | 1+(−3.56−0.535i)T |
good | 2 | 1+(−1.97+1.14i)T+(1−1.73i)T2 |
| 5 | 1+(2.78+1.60i)T+(2.5+4.33i)T2 |
| 7 | 1+(2.09−1.21i)T+(3.5−6.06i)T2 |
| 11 | 1+(−1.27+0.737i)T+(5.5−9.52i)T2 |
| 17 | 1+5.12T+17T2 |
| 19 | 1+1.13iT−19T2 |
| 23 | 1+(−4.61+7.99i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.487+0.844i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.16+1.82i)T+(15.5+26.8i)T2 |
| 37 | 1−4.22iT−37T2 |
| 41 | 1+(−3.47−2.00i)T+(20.5+35.5i)T2 |
| 43 | 1+(−4.33−7.50i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.33+0.769i)T+(23.5−40.7i)T2 |
| 53 | 1−0.739T+53T2 |
| 59 | 1+(6.72+3.88i)T+(29.5+51.0i)T2 |
| 61 | 1+(4.06+7.04i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.669+0.386i)T+(33.5+58.0i)T2 |
| 71 | 1+3.01iT−71T2 |
| 73 | 1−9.21iT−73T2 |
| 79 | 1+(1.86+3.23i)T+(−39.5+68.4i)T2 |
| 83 | 1+(12.3−7.13i)T+(41.5−71.8i)T2 |
| 89 | 1−8.21iT−89T2 |
| 97 | 1+(−13.1+7.61i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.22247352657698431461065746495, −12.59185073742298700609078090077, −11.40385447722023910753167433372, −10.87064342100046082654505515998, −9.200759368453928788001361973297, −8.381567351588612031252404677126, −6.27970062049964989363454033651, −4.72118637319553475088406179470, −4.02159286623981376501129711249, −2.89458481365581741435447923099,
3.27378127595196457363195219638, 3.95800541903625752442825210372, 6.00271817754724616364791287270, 7.06646663725221935626487832689, 7.43749802172832334842752583116, 8.958163451702020805830315732777, 11.01626144175725339017100190876, 11.96894565183473380147976392870, 12.99682948074297444544998103129, 13.58430053051277064825048880592