L(s) = 1 | + (−1.75 + 1.75i)2-s + (−1.38 − 1.03i)3-s − 4.17i·4-s + (3.52 + 0.943i)5-s + (4.25 − 0.617i)6-s + (−1.05 − 0.281i)7-s + (3.81 + 3.81i)8-s + (0.852 + 2.87i)9-s + (−7.84 + 4.52i)10-s + (1.46 + 1.46i)11-s + (−4.32 + 5.78i)12-s + (3.60 + 0.0594i)13-s + (2.34 − 1.35i)14-s + (−3.90 − 4.95i)15-s − 5.05·16-s + (−2.40 + 4.17i)17-s + ⋯ |
L(s) = 1 | + (−1.24 + 1.24i)2-s + (−0.801 − 0.598i)3-s − 2.08i·4-s + (1.57 + 0.421i)5-s + (1.73 − 0.252i)6-s + (−0.397 − 0.106i)7-s + (1.34 + 1.34i)8-s + (0.284 + 0.958i)9-s + (−2.47 + 1.43i)10-s + (0.442 + 0.442i)11-s + (−1.24 + 1.67i)12-s + (0.999 + 0.0164i)13-s + (0.626 − 0.361i)14-s + (−1.00 − 1.27i)15-s − 1.26·16-s + (−0.584 + 1.01i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.378−0.925i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.378−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.378−0.925i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.378−0.925i)
|
Particular Values
L(1) |
≈ |
0.481460+0.323407i |
L(21) |
≈ |
0.481460+0.323407i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.38+1.03i)T |
| 13 | 1+(−3.60−0.0594i)T |
good | 2 | 1+(1.75−1.75i)T−2iT2 |
| 5 | 1+(−3.52−0.943i)T+(4.33+2.5i)T2 |
| 7 | 1+(1.05+0.281i)T+(6.06+3.5i)T2 |
| 11 | 1+(−1.46−1.46i)T+11iT2 |
| 17 | 1+(2.40−4.17i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−5.01+1.34i)T+(16.4−9.5i)T2 |
| 23 | 1+(−0.496+0.860i)T+(−11.5−19.9i)T2 |
| 29 | 1+3.59iT−29T2 |
| 31 | 1+(−0.832+3.10i)T+(−26.8−15.5i)T2 |
| 37 | 1+(3.11+0.834i)T+(32.0+18.5i)T2 |
| 41 | 1+(0.0289+0.108i)T+(−35.5+20.5i)T2 |
| 43 | 1+(7.98−4.61i)T+(21.5−37.2i)T2 |
| 47 | 1+(7.57−2.02i)T+(40.7−23.5i)T2 |
| 53 | 1+9.48iT−53T2 |
| 59 | 1+(−0.399−0.399i)T+59iT2 |
| 61 | 1+(−4.06−7.03i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.34+1.43i)T+(58.0−33.5i)T2 |
| 71 | 1+(0.773+2.88i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−4.89+4.89i)T−73iT2 |
| 79 | 1+(5.66−9.80i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−0.638−2.38i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−0.0437+0.163i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−1.80+6.75i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.78906149659724773919716147713, −13.04866536851465901168757940187, −11.25070930917446704697419848966, −10.17834483972844572378804888920, −9.534241322988936873619259183412, −8.233595029901006037449580233618, −6.76752142275052530490703079959, −6.38457167427000061768185465682, −5.42050508945218294715953606913, −1.59609120152007447449190606302,
1.31935030372453493567548881692, 3.28227280892103264312737790922, 5.31176400200569388108379584681, 6.61140149039016115418631610230, 8.745962698586330733749900804166, 9.421892172865802395803539726328, 10.07254066440050213481032819139, 11.04504552501214485179387906788, 11.90514079846360584518877703436, 12.99477532183159590566257946351