L(s) = 1 | + (1.12 − 1.12i)2-s + (0.108 − 1.72i)3-s − 0.527i·4-s + (−1.83 − 0.492i)5-s + (−1.82 − 2.06i)6-s + (1.85 + 0.498i)7-s + (1.65 + 1.65i)8-s + (−2.97 − 0.376i)9-s + (−2.61 + 1.51i)10-s + (−1.22 − 1.22i)11-s + (−0.911 − 0.0573i)12-s + (2.63 + 2.46i)13-s + (2.64 − 1.52i)14-s + (−1.05 + 3.12i)15-s + 4.77·16-s + (−2.74 + 4.76i)17-s + ⋯ |
L(s) = 1 | + (0.794 − 0.794i)2-s + (0.0628 − 0.998i)3-s − 0.263i·4-s + (−0.821 − 0.220i)5-s + (−0.743 − 0.843i)6-s + (0.702 + 0.188i)7-s + (0.585 + 0.585i)8-s + (−0.992 − 0.125i)9-s + (−0.828 + 0.478i)10-s + (−0.369 − 0.369i)11-s + (−0.263 − 0.0165i)12-s + (0.731 + 0.682i)13-s + (0.708 − 0.408i)14-s + (−0.271 + 0.806i)15-s + 1.19·16-s + (−0.666 + 1.15i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.0346+0.999i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.0346+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.0346+0.999i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.0346+0.999i)
|
Particular Values
L(1) |
≈ |
1.04296−1.00743i |
L(21) |
≈ |
1.04296−1.00743i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.108+1.72i)T |
| 13 | 1+(−2.63−2.46i)T |
good | 2 | 1+(−1.12+1.12i)T−2iT2 |
| 5 | 1+(1.83+0.492i)T+(4.33+2.5i)T2 |
| 7 | 1+(−1.85−0.498i)T+(6.06+3.5i)T2 |
| 11 | 1+(1.22+1.22i)T+11iT2 |
| 17 | 1+(2.74−4.76i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.121−0.0326i)T+(16.4−9.5i)T2 |
| 23 | 1+(−2.99+5.18i)T+(−11.5−19.9i)T2 |
| 29 | 1+4.13iT−29T2 |
| 31 | 1+(1.98−7.42i)T+(−26.8−15.5i)T2 |
| 37 | 1+(3.76+1.00i)T+(32.0+18.5i)T2 |
| 41 | 1+(−0.0773−0.288i)T+(−35.5+20.5i)T2 |
| 43 | 1+(1.76−1.01i)T+(21.5−37.2i)T2 |
| 47 | 1+(10.4−2.81i)T+(40.7−23.5i)T2 |
| 53 | 1+9.44iT−53T2 |
| 59 | 1+(−5.60−5.60i)T+59iT2 |
| 61 | 1+(6.37+11.0i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−11.8+3.17i)T+(58.0−33.5i)T2 |
| 71 | 1+(−1.16−4.34i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−9.98+9.98i)T−73iT2 |
| 79 | 1+(−1.34+2.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+(0.0823+0.307i)T+(−71.8+41.5i)T2 |
| 89 | 1+(2.68−10.0i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−1.02+3.83i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.05234898726485966895476909876, −12.34443381477391253800831585842, −11.42341627589721130453655451852, −10.88841883855551029396264429948, −8.503285116265374558427734049094, −8.094243110090268608863382526672, −6.53490196154291846211244518272, −4.92119381911101215061081483124, −3.58168841235858272505351994959, −1.91938954197979256541738388742,
3.52001748734375843034002917630, 4.66557750396078821159613933064, 5.53698421328843441778742689605, 7.15755179291424844946896758325, 8.145237537244317860592599502222, 9.604383071186482842420944455450, 10.84587713094759731448348927488, 11.51225933336017015570799329793, 13.15596142491587332674548900801, 14.04272156042335486695147202481