L(s) = 1 | + (0.375 − 0.375i)2-s + (−0.0440 + 1.73i)3-s + 1.71i·4-s + (−2.85 − 0.764i)5-s + (0.633 + 0.667i)6-s + (3.85 + 1.03i)7-s + (1.39 + 1.39i)8-s + (−2.99 − 0.152i)9-s + (−1.35 + 0.784i)10-s + (1.41 + 1.41i)11-s + (−2.97 − 0.0757i)12-s + (−0.867 − 3.49i)13-s + (1.83 − 1.05i)14-s + (1.44 − 4.90i)15-s − 2.38·16-s + (2.38 − 4.12i)17-s + ⋯ |
L(s) = 1 | + (0.265 − 0.265i)2-s + (−0.0254 + 0.999i)3-s + 0.858i·4-s + (−1.27 − 0.341i)5-s + (0.258 + 0.272i)6-s + (1.45 + 0.390i)7-s + (0.493 + 0.493i)8-s + (−0.998 − 0.0508i)9-s + (−0.429 + 0.248i)10-s + (0.428 + 0.428i)11-s + (−0.858 − 0.0218i)12-s + (−0.240 − 0.970i)13-s + (0.490 − 0.283i)14-s + (0.374 − 1.26i)15-s − 0.596·16-s + (0.577 − 1.00i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.450−0.892i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.450−0.892i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.450−0.892i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.450−0.892i)
|
Particular Values
L(1) |
≈ |
0.939932+0.578534i |
L(21) |
≈ |
0.939932+0.578534i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.0440−1.73i)T |
| 13 | 1+(0.867+3.49i)T |
good | 2 | 1+(−0.375+0.375i)T−2iT2 |
| 5 | 1+(2.85+0.764i)T+(4.33+2.5i)T2 |
| 7 | 1+(−3.85−1.03i)T+(6.06+3.5i)T2 |
| 11 | 1+(−1.41−1.41i)T+11iT2 |
| 17 | 1+(−2.38+4.12i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.57+0.958i)T+(16.4−9.5i)T2 |
| 23 | 1+(0.469−0.812i)T+(−11.5−19.9i)T2 |
| 29 | 1+4.41iT−29T2 |
| 31 | 1+(−0.0175+0.0653i)T+(−26.8−15.5i)T2 |
| 37 | 1+(0.00215+0.000576i)T+(32.0+18.5i)T2 |
| 41 | 1+(−2.08−7.77i)T+(−35.5+20.5i)T2 |
| 43 | 1+(8.64−4.99i)T+(21.5−37.2i)T2 |
| 47 | 1+(−5.69+1.52i)T+(40.7−23.5i)T2 |
| 53 | 1−7.99iT−53T2 |
| 59 | 1+(3.08+3.08i)T+59iT2 |
| 61 | 1+(6.15+10.6i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.05+0.282i)T+(58.0−33.5i)T2 |
| 71 | 1+(4.06+15.1i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−0.854+0.854i)T−73iT2 |
| 79 | 1+(0.501−0.868i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−2.06−7.70i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−0.189+0.708i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−1.36+5.11i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.81533768439071521526580892970, −12.17335063934245424915782162336, −11.74642603103827370190573369958, −11.01078176965640963132008041378, −9.408279017897609053891446867420, −8.119230309631761807304332003585, −7.72781150062762627889927311392, −5.10733100054584930218062129094, −4.40140465889313103767997190962, −3.10177504672045394850138986062,
1.45878292505398273536679279012, 4.01352194994265877533215451198, 5.44057095585180127814355752953, 6.87700110979854852072995322693, 7.65492901892683715858986221782, 8.697511647547752058966101291362, 10.60581751924078597260850553884, 11.45891631460153480397516339162, 12.09121508498959308312894972671, 13.69632202817163985954759044000