L(s) = 1 | + (0.495 − 0.285i)2-s + (−1.06 + 1.36i)3-s + (−0.836 + 1.44i)4-s + (−0.796 + 0.459i)5-s + (−0.133 + 0.981i)6-s + 1.93i·7-s + 2.10i·8-s + (−0.751 − 2.90i)9-s + (−0.262 + 0.455i)10-s + (3.64 − 2.10i)11-s + (−1.09 − 2.68i)12-s + (1.35 + 3.34i)13-s + (0.552 + 0.957i)14-s + (0.214 − 1.57i)15-s + (−1.07 − 1.85i)16-s + (−1.20 − 2.08i)17-s + ⋯ |
L(s) = 1 | + (0.350 − 0.202i)2-s + (−0.612 + 0.790i)3-s + (−0.418 + 0.724i)4-s + (−0.356 + 0.205i)5-s + (−0.0544 + 0.400i)6-s + 0.730i·7-s + 0.742i·8-s + (−0.250 − 0.968i)9-s + (−0.0831 + 0.143i)10-s + (1.09 − 0.633i)11-s + (−0.316 − 0.774i)12-s + (0.375 + 0.926i)13-s + (0.147 + 0.255i)14-s + (0.0553 − 0.407i)15-s + (−0.268 − 0.464i)16-s + (−0.291 − 0.505i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.0469−0.998i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.0469−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.0469−0.998i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.0469−0.998i)
|
Particular Values
L(1) |
≈ |
0.656569+0.626463i |
L(21) |
≈ |
0.656569+0.626463i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.06−1.36i)T |
| 13 | 1+(−1.35−3.34i)T |
good | 2 | 1+(−0.495+0.285i)T+(1−1.73i)T2 |
| 5 | 1+(0.796−0.459i)T+(2.5−4.33i)T2 |
| 7 | 1−1.93iT−7T2 |
| 11 | 1+(−3.64+2.10i)T+(5.5−9.52i)T2 |
| 17 | 1+(1.20+2.08i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.60+0.928i)T+(9.5−16.4i)T2 |
| 23 | 1−8.22T+23T2 |
| 29 | 1+(2.36+4.09i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4.29−2.47i)T+(15.5−26.8i)T2 |
| 37 | 1+(0.959+0.554i)T+(18.5+32.0i)T2 |
| 41 | 1+0.566iT−41T2 |
| 43 | 1−9.58T+43T2 |
| 47 | 1+(1.35+0.780i)T+(23.5+40.7i)T2 |
| 53 | 1+4.09T+53T2 |
| 59 | 1+(−5.29−3.05i)T+(29.5+51.0i)T2 |
| 61 | 1−1.33T+61T2 |
| 67 | 1+16.3iT−67T2 |
| 71 | 1+(10.6−6.12i)T+(35.5−61.4i)T2 |
| 73 | 1−8.77iT−73T2 |
| 79 | 1+(−4.09+7.09i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.31+1.33i)T+(41.5+71.8i)T2 |
| 89 | 1+(11.4+6.61i)T+(44.5+77.0i)T2 |
| 97 | 1+13.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.79709994179759040359933286242, −12.53648760097026639997745498018, −11.43855915762074736893149844158, −11.30286080502540533400108384054, −9.236011373954407537924878796611, −8.901218308659970390179310945596, −7.06474143637873597026215420957, −5.62519647458676794965417894053, −4.33924042196526366954104719069, −3.27629099499374492049080296653,
1.12192424498000645566301779800, 4.08111424099919375876892903888, 5.35603503100533143843514964735, 6.53050885999447860292698284118, 7.49795253107976412906088376305, 8.983369314072910311456652972084, 10.35393877213564706642984944461, 11.22713938458541825628975454490, 12.55063765140411391514066176698, 13.17830731193204968147651679879