L(s) = 1 | + (0.495 − 0.285i)2-s + (−1.06 + 1.36i)3-s + (−0.836 + 1.44i)4-s + (−0.796 + 0.459i)5-s + (−0.133 + 0.981i)6-s + 1.93i·7-s + 2.10i·8-s + (−0.751 − 2.90i)9-s + (−0.262 + 0.455i)10-s + (3.64 − 2.10i)11-s + (−1.09 − 2.68i)12-s + (1.35 + 3.34i)13-s + (0.552 + 0.957i)14-s + (0.214 − 1.57i)15-s + (−1.07 − 1.85i)16-s + (−1.20 − 2.08i)17-s + ⋯ |
L(s) = 1 | + (0.350 − 0.202i)2-s + (−0.612 + 0.790i)3-s + (−0.418 + 0.724i)4-s + (−0.356 + 0.205i)5-s + (−0.0544 + 0.400i)6-s + 0.730i·7-s + 0.742i·8-s + (−0.250 − 0.968i)9-s + (−0.0831 + 0.143i)10-s + (1.09 − 0.633i)11-s + (−0.316 − 0.774i)12-s + (0.375 + 0.926i)13-s + (0.147 + 0.255i)14-s + (0.0553 − 0.407i)15-s + (−0.268 − 0.464i)16-s + (−0.291 − 0.505i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0469 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0469 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.656569 + 0.626463i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.656569 + 0.626463i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.06 - 1.36i)T \) |
| 13 | \( 1 + (-1.35 - 3.34i)T \) |
good | 2 | \( 1 + (-0.495 + 0.285i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.796 - 0.459i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 1.93iT - 7T^{2} \) |
| 11 | \( 1 + (-3.64 + 2.10i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.20 + 2.08i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.60 + 0.928i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 8.22T + 23T^{2} \) |
| 29 | \( 1 + (2.36 + 4.09i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.29 - 2.47i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.959 + 0.554i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 0.566iT - 41T^{2} \) |
| 43 | \( 1 - 9.58T + 43T^{2} \) |
| 47 | \( 1 + (1.35 + 0.780i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 4.09T + 53T^{2} \) |
| 59 | \( 1 + (-5.29 - 3.05i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 1.33T + 61T^{2} \) |
| 67 | \( 1 + 16.3iT - 67T^{2} \) |
| 71 | \( 1 + (10.6 - 6.12i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 8.77iT - 73T^{2} \) |
| 79 | \( 1 + (-4.09 + 7.09i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.31 + 1.33i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (11.4 + 6.61i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.79709994179759040359933286242, −12.53648760097026639997745498018, −11.43855915762074736893149844158, −11.30286080502540533400108384054, −9.236011373954407537924878796611, −8.901218308659970390179310945596, −7.06474143637873597026215420957, −5.62519647458676794965417894053, −4.33924042196526366954104719069, −3.27629099499374492049080296653,
1.12192424498000645566301779800, 4.08111424099919375876892903888, 5.35603503100533143843514964735, 6.53050885999447860292698284118, 7.49795253107976412906088376305, 8.983369314072910311456652972084, 10.35393877213564706642984944461, 11.22713938458541825628975454490, 12.55063765140411391514066176698, 13.17830731193204968147651679879