L(s) = 1 | + (1.72 + 0.187i)3-s + (−0.244 − 0.423i)5-s + (2.92 + 0.647i)9-s + (−1.31 − 0.761i)11-s + 0.652i·13-s + (−0.341 − 0.775i)15-s + (3.77 − 6.54i)17-s + (−0.364 + 0.210i)19-s + (5.11 − 2.95i)23-s + (2.38 − 4.12i)25-s + (4.92 + 1.66i)27-s + 7.16i·29-s + (6.39 + 3.69i)31-s + (−2.12 − 1.55i)33-s + (4.04 + 7.00i)37-s + ⋯ |
L(s) = 1 | + (0.994 + 0.108i)3-s + (−0.109 − 0.189i)5-s + (0.976 + 0.215i)9-s + (−0.397 − 0.229i)11-s + 0.180i·13-s + (−0.0881 − 0.200i)15-s + (0.916 − 1.58i)17-s + (−0.0836 + 0.0482i)19-s + (1.06 − 0.616i)23-s + (0.476 − 0.824i)25-s + (0.947 + 0.320i)27-s + 1.33i·29-s + (1.14 + 0.662i)31-s + (−0.370 − 0.271i)33-s + (0.665 + 1.15i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.961 + 0.273i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.961 + 0.273i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.389305400\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.389305400\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.72 - 0.187i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.244 + 0.423i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.31 + 0.761i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.652iT - 13T^{2} \) |
| 17 | \( 1 + (-3.77 + 6.54i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.364 - 0.210i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.11 + 2.95i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 7.16iT - 29T^{2} \) |
| 31 | \( 1 + (-6.39 - 3.69i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.04 - 7.00i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.53T + 41T^{2} \) |
| 43 | \( 1 + 5.56T + 43T^{2} \) |
| 47 | \( 1 + (4.65 + 8.06i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.26 - 0.731i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.67 + 6.37i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.65 + 5.57i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.31 - 12.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.8iT - 71T^{2} \) |
| 73 | \( 1 + (8.00 + 4.62i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.607 + 1.05i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.03T + 83T^{2} \) |
| 89 | \( 1 + (4.77 + 8.27i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 4.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.838545842125713139222799600748, −8.604396539039007591133880415702, −8.458114726915175161679362606449, −7.25306011081375987440946162417, −6.72544259869085105422449191320, −5.18111092062769897748934013076, −4.62125990250697784518101016379, −3.26268660432764290840351973202, −2.68940768201947629550243064182, −1.11626584596565416387482128462,
1.36666476589109391918763218068, 2.61285824348217937893015717595, 3.51273330313323556791990606604, 4.41233347757333584180996543299, 5.61851904136630583340829079874, 6.60505846046064606103428023380, 7.63282230467917347459111609439, 8.030463859262314993052733411366, 8.954980431686247505573920166639, 9.789742750509651602464113888654