L(s) = 1 | + (−0.615 + 1.61i)3-s + 1.31·5-s + (−2.24 − 1.99i)9-s − 4.97i·11-s + 0.733i·13-s + (−0.806 + 2.12i)15-s + 0.728·17-s − 6.94i·19-s − 7.92i·23-s − 3.27·25-s + (4.60 − 2.40i)27-s + 4.62i·29-s − 1.80i·31-s + (8.06 + 3.06i)33-s − 5.22·37-s + ⋯ |
L(s) = 1 | + (−0.355 + 0.934i)3-s + 0.586·5-s + (−0.747 − 0.663i)9-s − 1.50i·11-s + 0.203i·13-s + (−0.208 + 0.548i)15-s + 0.176·17-s − 1.59i·19-s − 1.65i·23-s − 0.655·25-s + (0.886 − 0.463i)27-s + 0.859i·29-s − 0.323i·31-s + (1.40 + 0.533i)33-s − 0.858·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.706i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.706i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.265183862\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.265183862\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.615 - 1.61i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.31T + 5T^{2} \) |
| 11 | \( 1 + 4.97iT - 11T^{2} \) |
| 13 | \( 1 - 0.733iT - 13T^{2} \) |
| 17 | \( 1 - 0.728T + 17T^{2} \) |
| 19 | \( 1 + 6.94iT - 19T^{2} \) |
| 23 | \( 1 + 7.92iT - 23T^{2} \) |
| 29 | \( 1 - 4.62iT - 29T^{2} \) |
| 31 | \( 1 + 1.80iT - 31T^{2} \) |
| 37 | \( 1 + 5.22T + 37T^{2} \) |
| 41 | \( 1 - 7.83T + 41T^{2} \) |
| 43 | \( 1 + 1.27T + 43T^{2} \) |
| 47 | \( 1 + 4.24T + 47T^{2} \) |
| 53 | \( 1 + 14.4iT - 53T^{2} \) |
| 59 | \( 1 - 9.35T + 59T^{2} \) |
| 61 | \( 1 - 13.5iT - 61T^{2} \) |
| 67 | \( 1 + 7.54T + 67T^{2} \) |
| 71 | \( 1 - 6.92iT - 71T^{2} \) |
| 73 | \( 1 - 3.79iT - 73T^{2} \) |
| 79 | \( 1 - 13.5T + 79T^{2} \) |
| 83 | \( 1 - 6.58T + 83T^{2} \) |
| 89 | \( 1 + 4.37T + 89T^{2} \) |
| 97 | \( 1 + 15.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.727859334974754533291453183156, −8.835883521498711220125778704102, −8.463446329954551382253939241869, −6.95155392287558638247364852502, −6.15037212803954774626453110822, −5.42349048592942648857370428378, −4.56601652999445717954402923658, −3.48886481495881104249463871695, −2.52401006099284430444863526310, −0.57774899628747049866871430534,
1.49263914702006069986057795632, 2.19931903900285164811193310028, 3.66355958363186160775104350300, 4.97878412782425264183217798541, 5.78444728551773417151834118674, 6.46482285887177871930680281665, 7.66240483673757980735948631227, 7.74715711380498342946676004215, 9.180389745674236187589354256033, 9.890864026064374190665990609022