Properties

Label 2-117600-1.1-c1-0-104
Degree $2$
Conductor $117600$
Sign $1$
Analytic cond. $939.040$
Root an. cond. $30.6437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 2·11-s − 3·13-s + 6·17-s − 19-s + 4·23-s + 27-s + 10·29-s − 4·31-s + 2·33-s + 3·37-s − 3·39-s + 6·41-s + 4·43-s + 12·47-s + 6·51-s + 6·53-s − 57-s + 8·59-s + 13·61-s + 7·67-s + 4·69-s − 6·71-s − 73-s − 7·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.603·11-s − 0.832·13-s + 1.45·17-s − 0.229·19-s + 0.834·23-s + 0.192·27-s + 1.85·29-s − 0.718·31-s + 0.348·33-s + 0.493·37-s − 0.480·39-s + 0.937·41-s + 0.609·43-s + 1.75·47-s + 0.840·51-s + 0.824·53-s − 0.132·57-s + 1.04·59-s + 1.66·61-s + 0.855·67-s + 0.481·69-s − 0.712·71-s − 0.117·73-s − 0.787·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117600\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(939.040\)
Root analytic conductor: \(30.6437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 117600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.692386475\)
\(L(\frac12)\) \(\approx\) \(4.692386475\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 + 7 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.72759998386731, −12.88301281704263, −12.78779818085880, −12.14617978139910, −11.76205968519094, −11.22018787550372, −10.52867365696021, −10.03165580327865, −9.823792351348233, −9.002825922634319, −8.825033793800807, −8.165120397816530, −7.604504950161688, −7.164085591576242, −6.781456013127345, −5.977753514546984, −5.520393831258997, −4.936891713095289, −4.232946636690754, −3.883943097526061, −3.083966184178347, −2.649501617951794, −2.076810030044006, −1.068994190082534, −0.7673253861121154, 0.7673253861121154, 1.068994190082534, 2.076810030044006, 2.649501617951794, 3.083966184178347, 3.883943097526061, 4.232946636690754, 4.936891713095289, 5.520393831258997, 5.977753514546984, 6.781456013127345, 7.164085591576242, 7.604504950161688, 8.165120397816530, 8.825033793800807, 9.002825922634319, 9.823792351348233, 10.03165580327865, 10.52867365696021, 11.22018787550372, 11.76205968519094, 12.14617978139910, 12.78779818085880, 12.88301281704263, 13.72759998386731

Graph of the $Z$-function along the critical line