L(s) = 1 | + 3-s + 9-s + 2·11-s − 3·13-s + 6·17-s − 19-s + 4·23-s + 27-s + 10·29-s − 4·31-s + 2·33-s + 3·37-s − 3·39-s + 6·41-s + 4·43-s + 12·47-s + 6·51-s + 6·53-s − 57-s + 8·59-s + 13·61-s + 7·67-s + 4·69-s − 6·71-s − 73-s − 7·79-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 0.603·11-s − 0.832·13-s + 1.45·17-s − 0.229·19-s + 0.834·23-s + 0.192·27-s + 1.85·29-s − 0.718·31-s + 0.348·33-s + 0.493·37-s − 0.480·39-s + 0.937·41-s + 0.609·43-s + 1.75·47-s + 0.840·51-s + 0.824·53-s − 0.132·57-s + 1.04·59-s + 1.66·61-s + 0.855·67-s + 0.481·69-s − 0.712·71-s − 0.117·73-s − 0.787·79-s + 1/9·81-s + ⋯ |
Λ(s)=(=(117600s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(117600s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.692386475 |
L(21) |
≈ |
4.692386475 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
| 7 | 1 |
good | 11 | 1−2T+pT2 |
| 13 | 1+3T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−10T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1−13T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+T+pT2 |
| 79 | 1+7T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+4T+pT2 |
| 97 | 1−3T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.72759998386731, −12.88301281704263, −12.78779818085880, −12.14617978139910, −11.76205968519094, −11.22018787550372, −10.52867365696021, −10.03165580327865, −9.823792351348233, −9.002825922634319, −8.825033793800807, −8.165120397816530, −7.604504950161688, −7.164085591576242, −6.781456013127345, −5.977753514546984, −5.520393831258997, −4.936891713095289, −4.232946636690754, −3.883943097526061, −3.083966184178347, −2.649501617951794, −2.076810030044006, −1.068994190082534, −0.7673253861121154,
0.7673253861121154, 1.068994190082534, 2.076810030044006, 2.649501617951794, 3.083966184178347, 3.883943097526061, 4.232946636690754, 4.936891713095289, 5.520393831258997, 5.977753514546984, 6.781456013127345, 7.164085591576242, 7.604504950161688, 8.165120397816530, 8.825033793800807, 9.002825922634319, 9.823792351348233, 10.03165580327865, 10.52867365696021, 11.22018787550372, 11.76205968519094, 12.14617978139910, 12.78779818085880, 12.88301281704263, 13.72759998386731