L(s) = 1 | + 0.149i·2-s + 2.76·3-s + 1.97·4-s − 4.13i·5-s + 0.413i·6-s + i·7-s + 0.595i·8-s + 4.61·9-s + 0.618·10-s − 2.55i·11-s + 5.45·12-s − 0.149·14-s − 11.4i·15-s + 3.86·16-s − 1.50·17-s + 0.691i·18-s + ⋯ |
L(s) = 1 | + 0.105i·2-s + 1.59·3-s + 0.988·4-s − 1.84i·5-s + 0.168i·6-s + 0.377i·7-s + 0.210i·8-s + 1.53·9-s + 0.195·10-s − 0.769i·11-s + 1.57·12-s − 0.0399·14-s − 2.94i·15-s + 0.966·16-s − 0.364·17-s + 0.162i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.479606615\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.479606615\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 0.149iT - 2T^{2} \) |
| 3 | \( 1 - 2.76T + 3T^{2} \) |
| 5 | \( 1 + 4.13iT - 5T^{2} \) |
| 11 | \( 1 + 2.55iT - 11T^{2} \) |
| 17 | \( 1 + 1.50T + 17T^{2} \) |
| 19 | \( 1 - 5.93iT - 19T^{2} \) |
| 23 | \( 1 + 6.55T + 23T^{2} \) |
| 29 | \( 1 - 0.283T + 29T^{2} \) |
| 31 | \( 1 - 1.95iT - 31T^{2} \) |
| 37 | \( 1 - 5.66iT - 37T^{2} \) |
| 41 | \( 1 - 6.70iT - 41T^{2} \) |
| 43 | \( 1 - 8.14T + 43T^{2} \) |
| 47 | \( 1 + 3.94iT - 47T^{2} \) |
| 53 | \( 1 + 1.08T + 53T^{2} \) |
| 59 | \( 1 + 3.71iT - 59T^{2} \) |
| 61 | \( 1 - 1.93T + 61T^{2} \) |
| 67 | \( 1 - 3.38iT - 67T^{2} \) |
| 71 | \( 1 + 5.36iT - 71T^{2} \) |
| 73 | \( 1 - 2.62iT - 73T^{2} \) |
| 79 | \( 1 - 7.89T + 79T^{2} \) |
| 83 | \( 1 - 10.5iT - 83T^{2} \) |
| 89 | \( 1 + 6.64iT - 89T^{2} \) |
| 97 | \( 1 + 0.504iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.486734374020988338081569451638, −8.544124550528839889558587744585, −8.249956034569618938604169514227, −7.65948581388541983394153398303, −6.25887107245756455092538778699, −5.48321798323146671787709539949, −4.25930735406136291027524222629, −3.38198863691151545591524597367, −2.20147294258284861136431629560, −1.38802875215899210107331621423,
2.15841324931164942804046852482, 2.44500561719935921308275660884, 3.39945439270224790847016242865, 4.15504092407431979811326667598, 6.03910535040330605852399947731, 6.92727048988158527465841550300, 7.36666081774686506000211748919, 7.912147658294991219985834108674, 9.177223084706835188647483102393, 9.926712548473340648731981782464