Properties

Label 2-11e3-1.1-c1-0-27
Degree $2$
Conductor $1331$
Sign $-1$
Analytic cond. $10.6280$
Root an. cond. $3.26007$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.00·2-s − 2.20·3-s + 2.02·4-s − 3.12·5-s + 4.43·6-s − 0.406·7-s − 0.0513·8-s + 1.88·9-s + 6.26·10-s − 4.47·12-s − 1.59·13-s + 0.815·14-s + 6.90·15-s − 3.94·16-s − 0.870·17-s − 3.77·18-s − 7.69·19-s − 6.32·20-s + 0.898·21-s + 5.45·23-s + 0.113·24-s + 4.75·25-s + 3.20·26-s + 2.46·27-s − 0.823·28-s + 9.13·29-s − 13.8·30-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.27·3-s + 1.01·4-s − 1.39·5-s + 1.80·6-s − 0.153·7-s − 0.0181·8-s + 0.627·9-s + 1.98·10-s − 1.29·12-s − 0.443·13-s + 0.218·14-s + 1.78·15-s − 0.987·16-s − 0.211·17-s − 0.890·18-s − 1.76·19-s − 1.41·20-s + 0.196·21-s + 1.13·23-s + 0.0231·24-s + 0.950·25-s + 0.629·26-s + 0.475·27-s − 0.155·28-s + 1.69·29-s − 2.52·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1331\)    =    \(11^{3}\)
Sign: $-1$
Analytic conductor: \(10.6280\)
Root analytic conductor: \(3.26007\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1331,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
good2 \( 1 + 2.00T + 2T^{2} \)
3 \( 1 + 2.20T + 3T^{2} \)
5 \( 1 + 3.12T + 5T^{2} \)
7 \( 1 + 0.406T + 7T^{2} \)
13 \( 1 + 1.59T + 13T^{2} \)
17 \( 1 + 0.870T + 17T^{2} \)
19 \( 1 + 7.69T + 19T^{2} \)
23 \( 1 - 5.45T + 23T^{2} \)
29 \( 1 - 9.13T + 29T^{2} \)
31 \( 1 - 6.93T + 31T^{2} \)
37 \( 1 - 7.90T + 37T^{2} \)
41 \( 1 - 2.89T + 41T^{2} \)
43 \( 1 + 5.29T + 43T^{2} \)
47 \( 1 - 4.43T + 47T^{2} \)
53 \( 1 - 4.44T + 53T^{2} \)
59 \( 1 + 3.39T + 59T^{2} \)
61 \( 1 + 14.1T + 61T^{2} \)
67 \( 1 - 5.40T + 67T^{2} \)
71 \( 1 + 1.81T + 71T^{2} \)
73 \( 1 + 5.78T + 73T^{2} \)
79 \( 1 - 15.7T + 79T^{2} \)
83 \( 1 - 9.70T + 83T^{2} \)
89 \( 1 + 1.07T + 89T^{2} \)
97 \( 1 - 9.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.145162794203559109151222146312, −8.342189480767286881169993895394, −7.81100619535108641962635074816, −6.77338845352861326417440139826, −6.37433697892512152277743398941, −4.81081102101735773907142218143, −4.34157514703823384080786571738, −2.70909988921912084782125939497, −0.928844122298963116031517267399, 0, 0.928844122298963116031517267399, 2.70909988921912084782125939497, 4.34157514703823384080786571738, 4.81081102101735773907142218143, 6.37433697892512152277743398941, 6.77338845352861326417440139826, 7.81100619535108641962635074816, 8.342189480767286881169993895394, 9.145162794203559109151222146312

Graph of the $Z$-function along the critical line