L(s) = 1 | + (−0.672 + 0.488i)3-s + (−0.809 − 0.587i)4-s + (−0.0879 − 0.270i)5-s + (−0.0957 + 0.294i)9-s + 0.830·12-s + (0.191 + 0.138i)15-s + (0.309 + 0.951i)16-s + (−0.0879 + 0.270i)20-s + 1.68·23-s + (0.743 − 0.540i)25-s + (−0.336 − 1.03i)27-s + (0.519 − 1.60i)31-s + (0.250 − 0.182i)36-s + (1.05 + 0.769i)37-s + 0.0881·45-s + ⋯ |
L(s) = 1 | + (−0.672 + 0.488i)3-s + (−0.809 − 0.587i)4-s + (−0.0879 − 0.270i)5-s + (−0.0957 + 0.294i)9-s + 0.830·12-s + (0.191 + 0.138i)15-s + (0.309 + 0.951i)16-s + (−0.0879 + 0.270i)20-s + 1.68·23-s + (0.743 − 0.540i)25-s + (−0.336 − 1.03i)27-s + (0.519 − 1.60i)31-s + (0.250 − 0.182i)36-s + (1.05 + 0.769i)37-s + 0.0881·45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6895029471\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6895029471\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 3 | \( 1 + (0.672 - 0.488i)T + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (0.0879 + 0.270i)T + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - 1.68T + T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.519 + 1.60i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.05 - 0.769i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-1.05 + 0.769i)T + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.592 - 1.82i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-1.55 - 1.12i)T + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + 0.284T + T^{2} \) |
| 71 | \( 1 + (0.404 + 1.24i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + 1.91T + T^{2} \) |
| 97 | \( 1 + (-0.519 + 1.60i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.864401839269452120711782419085, −9.108265213525785403236630440127, −8.407096148428256569029194402935, −7.42009196960413041229756274965, −6.19728854887104068043129638996, −5.56264459540220542314452016298, −4.68459158220548203298898390345, −4.25194053726174400891170954967, −2.69692539728970287020408130001, −0.951139192621951683066811718955,
0.981635519143627430834342897639, 2.86394402475023642000813169368, 3.71108347751307166887678354504, 4.88308193773829424051297576160, 5.54185604596991230558490333891, 6.78374058032854058936318349685, 7.14346915770421613088607715917, 8.282023384014114367240851405874, 8.956612362801077762126231950197, 9.682764248829263649462019621170