L(s) = 1 | + (−0.0879 + 0.270i)3-s + (0.309 + 0.951i)4-s + (−1.36 + 0.988i)5-s + (0.743 + 0.540i)9-s − 0.284·12-s + (−0.147 − 0.455i)15-s + (−0.809 + 0.587i)16-s + (−1.36 − 0.988i)20-s − 1.30·23-s + (0.565 − 1.74i)25-s + (−0.441 + 0.321i)27-s + (1.05 + 0.769i)31-s + (−0.283 + 0.874i)36-s + (−0.592 − 1.82i)37-s − 1.54·45-s + ⋯ |
L(s) = 1 | + (−0.0879 + 0.270i)3-s + (0.309 + 0.951i)4-s + (−1.36 + 0.988i)5-s + (0.743 + 0.540i)9-s − 0.284·12-s + (−0.147 − 0.455i)15-s + (−0.809 + 0.587i)16-s + (−1.36 − 0.988i)20-s − 1.30·23-s + (0.565 − 1.74i)25-s + (−0.441 + 0.321i)27-s + (1.05 + 0.769i)31-s + (−0.283 + 0.874i)36-s + (−0.592 − 1.82i)37-s − 1.54·45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.809 - 0.587i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.809 - 0.587i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7815010030\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7815010030\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (0.0879 - 0.270i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (1.36 - 0.988i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + 1.30T + T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-1.05 - 0.769i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.592 + 1.82i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.592 - 1.82i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.672 + 0.488i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.256 - 0.790i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - 1.68T + T^{2} \) |
| 71 | \( 1 + (-1.55 + 1.12i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - 0.830T + T^{2} \) |
| 97 | \( 1 + (-1.05 - 0.769i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41026397651418457774535273652, −9.328472381698280177852390172438, −8.051725168956934141775096188731, −7.86508523830649239362479282764, −7.03829983235158069307098795840, −6.33728241948049274654932749383, −4.76334434035789920705405263292, −3.96788906112860932433350918658, −3.34375834192526889457091687192, −2.23650065638581581160866804457,
0.67298068428479325757427945693, 1.83874668153421823065654875332, 3.55960426397694812054542243359, 4.44937017289304686762714613905, 5.16170542152996583448036561193, 6.31515295700400639372811031007, 6.97228114182517077033325408706, 7.982885895064531357878224016477, 8.511264106370933074516497923889, 9.703834858561387117271590797412