Properties

Label 2-120-1.1-c3-0-4
Degree $2$
Conductor $120$
Sign $-1$
Analytic cond. $7.08022$
Root an. cond. $2.66087$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s + 20·7-s + 9·9-s − 56·11-s − 86·13-s + 15·15-s − 106·17-s + 4·19-s − 60·21-s + 136·23-s + 25·25-s − 27·27-s − 206·29-s − 152·31-s + 168·33-s − 100·35-s + 282·37-s + 258·39-s − 246·41-s + 412·43-s − 45·45-s + 40·47-s + 57·49-s + 318·51-s − 126·53-s + 280·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.07·7-s + 1/3·9-s − 1.53·11-s − 1.83·13-s + 0.258·15-s − 1.51·17-s + 0.0482·19-s − 0.623·21-s + 1.23·23-s + 1/5·25-s − 0.192·27-s − 1.31·29-s − 0.880·31-s + 0.886·33-s − 0.482·35-s + 1.25·37-s + 1.05·39-s − 0.937·41-s + 1.46·43-s − 0.149·45-s + 0.124·47-s + 0.166·49-s + 0.873·51-s − 0.326·53-s + 0.686·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(7.08022\)
Root analytic conductor: \(2.66087\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 120,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 + p T \)
good7 \( 1 - 20 T + p^{3} T^{2} \)
11 \( 1 + 56 T + p^{3} T^{2} \)
13 \( 1 + 86 T + p^{3} T^{2} \)
17 \( 1 + 106 T + p^{3} T^{2} \)
19 \( 1 - 4 T + p^{3} T^{2} \)
23 \( 1 - 136 T + p^{3} T^{2} \)
29 \( 1 + 206 T + p^{3} T^{2} \)
31 \( 1 + 152 T + p^{3} T^{2} \)
37 \( 1 - 282 T + p^{3} T^{2} \)
41 \( 1 + 6 p T + p^{3} T^{2} \)
43 \( 1 - 412 T + p^{3} T^{2} \)
47 \( 1 - 40 T + p^{3} T^{2} \)
53 \( 1 + 126 T + p^{3} T^{2} \)
59 \( 1 - 56 T + p^{3} T^{2} \)
61 \( 1 + 2 T + p^{3} T^{2} \)
67 \( 1 + 388 T + p^{3} T^{2} \)
71 \( 1 + 672 T + p^{3} T^{2} \)
73 \( 1 - 1170 T + p^{3} T^{2} \)
79 \( 1 - 408 T + p^{3} T^{2} \)
83 \( 1 - 668 T + p^{3} T^{2} \)
89 \( 1 - 66 T + p^{3} T^{2} \)
97 \( 1 + 926 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46463514703776210037668278964, −11.26572264432476285563810637861, −10.74754642118653737554343963329, −9.329803339228465296065782693661, −7.88380481382571055360508795733, −7.16023597148262679847623851296, −5.30655493261829368208922248556, −4.59991571390655140899607859969, −2.36344668504755659920796853295, 0, 2.36344668504755659920796853295, 4.59991571390655140899607859969, 5.30655493261829368208922248556, 7.16023597148262679847623851296, 7.88380481382571055360508795733, 9.329803339228465296065782693661, 10.74754642118653737554343963329, 11.26572264432476285563810637861, 12.46463514703776210037668278964

Graph of the $Z$-function along the critical line