L(s) = 1 | + (1.41 + 0.0941i)2-s + (−1.68 − 0.416i)3-s + (1.98 + 0.265i)4-s + (1.62 − 1.54i)5-s + (−2.33 − 0.746i)6-s + (−0.361 + 0.361i)7-s + (2.77 + 0.561i)8-s + (2.65 + 1.40i)9-s + (2.43 − 2.02i)10-s − 2.63·11-s + (−3.22 − 1.27i)12-s + (−3.49 + 3.49i)13-s + (−0.544 + 0.476i)14-s + (−3.36 + 1.91i)15-s + (3.85 + 1.05i)16-s + (−3.61 − 3.61i)17-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0665i)2-s + (−0.970 − 0.240i)3-s + (0.991 + 0.132i)4-s + (0.724 − 0.688i)5-s + (−0.952 − 0.304i)6-s + (−0.136 + 0.136i)7-s + (0.980 + 0.198i)8-s + (0.884 + 0.466i)9-s + (0.769 − 0.638i)10-s − 0.794·11-s + (−0.930 − 0.367i)12-s + (−0.968 + 0.968i)13-s + (−0.145 + 0.127i)14-s + (−0.869 + 0.494i)15-s + (0.964 + 0.263i)16-s + (−0.876 − 0.876i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.234i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 + 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47925 - 0.175761i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47925 - 0.175761i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 0.0941i)T \) |
| 3 | \( 1 + (1.68 + 0.416i)T \) |
| 5 | \( 1 + (-1.62 + 1.54i)T \) |
good | 7 | \( 1 + (0.361 - 0.361i)T - 7iT^{2} \) |
| 11 | \( 1 + 2.63T + 11T^{2} \) |
| 13 | \( 1 + (3.49 - 3.49i)T - 13iT^{2} \) |
| 17 | \( 1 + (3.61 + 3.61i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.672T + 19T^{2} \) |
| 23 | \( 1 + (4.31 - 4.31i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.76iT - 29T^{2} \) |
| 31 | \( 1 - 3.73T + 31T^{2} \) |
| 37 | \( 1 + (-2.82 - 2.82i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.10iT - 41T^{2} \) |
| 43 | \( 1 + (-7.57 + 7.57i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.987 + 0.987i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.646 + 0.646i)T + 53iT^{2} \) |
| 59 | \( 1 + 4.92iT - 59T^{2} \) |
| 61 | \( 1 + 6.07iT - 61T^{2} \) |
| 67 | \( 1 + (-0.349 - 0.349i)T + 67iT^{2} \) |
| 71 | \( 1 + 8.63iT - 71T^{2} \) |
| 73 | \( 1 + (11.3 + 11.3i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.07iT - 79T^{2} \) |
| 83 | \( 1 + (-8.53 - 8.53i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.58T + 89T^{2} \) |
| 97 | \( 1 + (0.660 - 0.660i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.39005039574373496318138410567, −12.41765741514241666190778776085, −11.76829120942313902485500131948, −10.58649482070175993340597522348, −9.445867724157522922402985093476, −7.56438374791888586325921907142, −6.47052091506511208879437123507, −5.35488946864313463135466148459, −4.58305846880449325612744215944, −2.15523670621358233049512183517,
2.56635425807087230973151481604, 4.39229959424836275096459909554, 5.65010560185608275944114146847, 6.41656676754295628925680577809, 7.64158520779358682973407520603, 10.03741051194394526131518942214, 10.45145047676257193748751156965, 11.48475266298251613884225277167, 12.68406320949440557910723493442, 13.26671572515331130111905494450