L(s) = 1 | + (1 − i)2-s + (1.22 + 1.22i)3-s − 2i·4-s + (0.224 − 2.22i)5-s + 2.44·6-s + (−3.44 + 3.44i)7-s + (−2 − 2i)8-s + 2.99i·9-s + (−2 − 2.44i)10-s + 1.55·11-s + (2.44 − 2.44i)12-s + 6.89i·14-s + (2.99 − 2.44i)15-s − 4·16-s + (2.99 + 2.99i)18-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (0.707 + 0.707i)3-s − i·4-s + (0.100 − 0.994i)5-s + 0.999·6-s + (−1.30 + 1.30i)7-s + (−0.707 − 0.707i)8-s + 0.999i·9-s + (−0.632 − 0.774i)10-s + 0.467·11-s + (0.707 − 0.707i)12-s + 1.84i·14-s + (0.774 − 0.632i)15-s − 16-s + (0.707 + 0.707i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 + 0.608i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.52737 - 0.518265i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.52737 - 0.518265i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 + (-0.224 + 2.22i)T \) |
good | 7 | \( 1 + (3.44 - 3.44i)T - 7iT^{2} \) |
| 11 | \( 1 - 1.55T + 11T^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 17 | \( 1 + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 23iT^{2} \) |
| 29 | \( 1 + 5.34iT - 29T^{2} \) |
| 31 | \( 1 - 4.89T + 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 + (-2.44 - 2.44i)T + 53iT^{2} \) |
| 59 | \( 1 + 15.3iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-11.8 - 11.8i)T + 73iT^{2} \) |
| 79 | \( 1 - 14.6iT - 79T^{2} \) |
| 83 | \( 1 + (4 + 4i)T + 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (-8.79 + 8.79i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.22533647640015539979488912958, −12.50699243450377762331485054253, −11.56085103190057420058583468490, −9.935841918997355946545608675042, −9.416200152755732205001827323502, −8.521603896613374908086709270396, −6.22322758073195348110990522134, −5.11850981422173399394926350098, −3.78877405540473134226226879488, −2.44366999295522310192634292701,
2.99776426019454343936143168879, 3.90086673055437579412211919535, 6.28034123102157793179296107663, 6.88596866754836332506236089286, 7.67495529477065139403961646919, 9.187057553234918187388590182671, 10.41910752839780795507238379405, 11.91065649893828646606668127295, 13.02512040437146557062300299201, 13.69102926914220212314699249863