L(s) = 1 | + (−1.30 + 0.533i)2-s + (−1.59 + 0.667i)3-s + (1.43 − 1.39i)4-s + (−0.143 − 2.23i)5-s + (1.73 − 1.72i)6-s + (0.582 − 0.582i)7-s + (−1.13 + 2.59i)8-s + (2.10 − 2.13i)9-s + (1.37 + 2.84i)10-s + 3.68·11-s + (−1.35 + 3.18i)12-s + (3.88 − 3.88i)13-s + (−0.452 + 1.07i)14-s + (1.71 + 3.47i)15-s + (0.0980 − 3.99i)16-s + (−0.880 − 0.880i)17-s + ⋯ |
L(s) = 1 | + (−0.926 + 0.377i)2-s + (−0.922 + 0.385i)3-s + (0.715 − 0.698i)4-s + (−0.0639 − 0.997i)5-s + (0.709 − 0.704i)6-s + (0.220 − 0.220i)7-s + (−0.399 + 0.916i)8-s + (0.703 − 0.711i)9-s + (0.435 + 0.900i)10-s + 1.11·11-s + (−0.391 + 0.920i)12-s + (1.07 − 1.07i)13-s + (−0.120 + 0.287i)14-s + (0.443 + 0.896i)15-s + (0.0245 − 0.999i)16-s + (−0.213 − 0.213i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.547450 - 0.141291i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.547450 - 0.141291i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.30 - 0.533i)T \) |
| 3 | \( 1 + (1.59 - 0.667i)T \) |
| 5 | \( 1 + (0.143 + 2.23i)T \) |
good | 7 | \( 1 + (-0.582 + 0.582i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.68T + 11T^{2} \) |
| 13 | \( 1 + (-3.88 + 3.88i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.880 + 0.880i)T + 17iT^{2} \) |
| 19 | \( 1 + 6.32T + 19T^{2} \) |
| 23 | \( 1 + (-2.06 + 2.06i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.37iT - 29T^{2} \) |
| 31 | \( 1 - 3.32T + 31T^{2} \) |
| 37 | \( 1 + (-2.44 - 2.44i)T + 37iT^{2} \) |
| 41 | \( 1 - 0.648iT - 41T^{2} \) |
| 43 | \( 1 + (-0.819 + 0.819i)T - 43iT^{2} \) |
| 47 | \( 1 + (6.28 + 6.28i)T + 47iT^{2} \) |
| 53 | \( 1 + (-5.60 - 5.60i)T + 53iT^{2} \) |
| 59 | \( 1 - 6.12iT - 59T^{2} \) |
| 61 | \( 1 - 5.13iT - 61T^{2} \) |
| 67 | \( 1 + (-4.90 - 4.90i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.13iT - 71T^{2} \) |
| 73 | \( 1 + (-4.69 - 4.69i)T + 73iT^{2} \) |
| 79 | \( 1 + 1.10iT - 79T^{2} \) |
| 83 | \( 1 + (6.27 + 6.27i)T + 83iT^{2} \) |
| 89 | \( 1 - 15.3T + 89T^{2} \) |
| 97 | \( 1 + (5.42 - 5.42i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.23644209696087993552627261176, −12.07755134781857731913954440932, −11.14412061025996702036605104310, −10.25636011620898010477701897720, −9.082824754313948646960085702721, −8.248539626621148496198586290185, −6.65857148542271416309567901990, −5.70261692967966253596328939724, −4.31734633457101120041564518952, −1.03329230054131953142505625594,
1.84166702701052026193683283414, 3.95848012795265708272927494051, 6.36841632920498996939422343527, 6.75110967973632144651317918978, 8.219367999855435283993312197260, 9.458529760889541553965056848449, 10.78669510074753323085122304271, 11.26582485455751662428462827409, 12.07508458563454997051930812054, 13.31392036058701190654395566067